Матеріальна точка рухається прямолінійно за законом x(t)=4t^2-5t+1 (x - вимірюється в метрах, t - у секундах). У який момент часу швидкість точки дорівнюватиме 19 м/с?
Материальная точка движется прямолинейно по закону
x(t) = 4t² - 5t + 1 (x - измеряется в метрах, t - в секундах).
В какой момент времени скорость точки равна 19 м/с?
Відповідь:
0.32
Пояснення:
Рисунок : квадрат 3×3 ; S□=9 всевозможние пари чисел (х, у). которие принимают значения от [-1; 2]
х+у>1 дает значения в етом квадрате више прямой у=1-х
ух<1 дает область под гиперболой
найдем пересечение гиперболи с квадратом у=2, имеем х=0.5
Тогда площадь под гиперболой S=∫_0.5^2 1/х dx= ln x |_0.5^2=ln 2- ln0.5=1.386.
∫_0.5^2 - Интеграл от 0,5 до 2
Область пар (х,у) можна разбить на 3 области:
хє[-1; 1/2] треугольник, ограничений прямой х+у>1 и сторонами квадрата,
хє(1; 2] - область под гиперболой и еще треугольник, ограничений прямой х+у>1 и прямой у=0, для ує[-1;0]
S△=1/2×(1.5)^2=1.125 для хє[-1; 1/2] & ує[ 1/2;2]
S◁=1/2×1×1=1/2=0.5 для хє[1; 2] & ує[-1;0]
S▽=1/2×(0.5)^2=0.125 треугольник под прямой х+у=1, которий вошел в площу гиперболи, его нужно отнять
для хє[1/2; 1] & ує[1/2;1]
Тогда
P=(S△+S◁+S-S▽)/S□=(1.125+0.5+1.386-0.125)/9=0.32
В решении.
Объяснение:
Матеріальна точка рухається прямолінійно за законом x(t)=4t^2-5t+1 (x - вимірюється в метрах, t - у секундах). У який момент часу швидкість точки дорівнюватиме 19 м/с?
Материальная точка движется прямолинейно по закону
x(t) = 4t² - 5t + 1 (x - измеряется в метрах, t - в секундах).
В какой момент времени скорость точки равна 19 м/с?
x(t) = 4t² - 5t + 1
v(t) = x`(t) (над х знак производной);
х`(t) = (4t² - 5t + 1)`
x`(t) = 2 * 4t - 5 = 8t - 5;
v(t) = 8t - 5;
v(t) = 19;
8t - 5 = 19
8t = 19 + 5
8t = 24
t = 24/8
t = 3 (сек).