Т.к. в обоих случаях нужно обосновать, что L=0, определение преобразуется в утверждение
2)
А значит, если взять (*), . И правда:
(*) Очевидно, что для любого допустимого значения выражение определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)
А это и означает, что предел данной последовательности равен 0
4)
А значит, если взять (**), . И правда:
(**) Очевидно, что для любого допустимого значения выражение определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)
А это и означает, что предел данной последовательности равен 0
___________________________
2) a=1. Тогда
4)
___________________________
Обозначения и некоторые св-ва: {x} - дробная часть числа x, [x] - целая часть числа x.
В решении.
Объяснение:
а) 0,6х²у * ? = -3х⁴у
? = - 3х⁴у / 0,6х²у =
3 и 0,6 сократить (разделить) на 0,6; х⁴ и х² на х²; у и у на у:
= - 5х²;
б) ? * (-4ху²) = 8,2х³у³
? = 8,2х³у³ / (-4ху²)=
сократить (разделить) 8,2 и 4 на 4; х³ и х на х; у³ и у² на у²:
= -2,05х²у;
в) -5ху * ? = 0,8х²у³
? = 0,8х²у³ / (-5ху)=
сократить (разделить) 0,8 и 5 на 5; х² и х на х; у³ и у на у:
= -0,16ху².
Проверка путём подстановки вычисленных значений неизвестной величины в выражения показала, что данные решения удовлетворяют данным выражениям.
/ - знак деления.
По определению,
Т.к. в обоих случаях нужно обосновать, что L=0, определение преобразуется в утверждение
2)
А значит, если взять (*), . И правда:
(*) Очевидно, что для любого допустимого значения выражение определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)
А это и означает, что предел данной последовательности равен 0
4)
А значит, если взять (**), . И правда:
(**) Очевидно, что для любого допустимого значения выражение определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)
А это и означает, что предел данной последовательности равен 0
___________________________
2) a=1. Тогда
4)
___________________________
Обозначения и некоторые св-ва: {x} - дробная часть числа x, [x] - целая часть числа x.