Исследуем поведение функции вблизи точек, где её аналитическое выражение меняется . Найдём левосторонние и правосторонние пределы в точках х=0, х=2 , х=5 .
При х=0 функция имеет разрыв 1 рода .
При х=2 функция непрерывна.
При х=5 функция имеет разрыв 2 рода .
График функции нарисован сплошной линией.
На 1 рисунке нет чертежа функции при х>5 , для которого прямая х=5 является асимптотой , так как он не умещается при данном масштабе. Этот график полностью начерчен отдельно на 2 рисунке, чтобы вы понимали, как он расположен. Но для вашей функции берётся только та часть графика, которая нарисована для х>5 .
5t^2 - 12t + 4 = 0
D=144 - 4*4*5 = 64
t1 = (12 - 8)/10 = 4/10 = 2/5
t2 = (12+8)/10 = 20/10 = 2 > 1 - посторонний корень
cosx = 2/5
x = +- arccos(2/5) + 2πk
x∈[-5π/2;-π]
1) -5π/2 ≤ arccos(2/5) + 2πk ≤ -π - во всех частях неравенства отнимем аркосинус, и получившееся выражение разделим на 2пи:
-5/4 - (arccos(2/5))/(2π) ≤ k ≤ -0.5 - (arccos(2/5))/(2π), => k= -1
2) -5π/2 ≤ -arccos(2/5) + 2πk ≤ -π - во всех частях неравенства прибави аркосинус, и получившееся выражение разделим на 2пи:
-5/4 + (arccos(2/5))/(2π) ≤ k ≤ -0.5 + (arccos(2/5))/(2π), => k= -1
Значит, нужный корень существует при k=-1
x = +-arccos(2/5) - 2π
Исследуем поведение функции вблизи точек, где её аналитическое выражение меняется . Найдём левосторонние и правосторонние пределы в точках х=0, х=2 , х=5 .
При х=0 функция имеет разрыв 1 рода .
При х=2 функция непрерывна.
При х=5 функция имеет разрыв 2 рода .
График функции нарисован сплошной линией.
На 1 рисунке нет чертежа функции при х>5 , для которого прямая х=5 является асимптотой , так как он не умещается при данном масштабе. Этот график полностью начерчен отдельно на 2 рисунке, чтобы вы понимали, как он расположен. Но для вашей функции берётся только та часть графика, которая нарисована для х>5 .