Чтобы решить систему методом Крамера, надо иметь квадратную систему (количество уравнений = количеству неизвестных), соответственно будет и квадратная матрица системы, для которой можно подсчитать определитель. Приведём систему к такому виду методом простейших преобразований.
Умножим (1) ур. на (-2) и прибавим его к (3) ур-ю: 2х+у=4 у=2 -у=-1 ⇒ у=1 Получаем, что "у" одновременно равен 2 и 1, что невозможно. Система несовместна . Решений нет . (Хоть методом Крамера, хоть другим методом получим, что система не имеет решений) .
3 * (f(1) + f(2) + f(3)) = 2 * 3 * 4 + 3 * 3 * 4 = 3 * 4 * (2 + 3) = 3 * 4 * 5
3 * (f(1) + ... + f(4)) = 3 * 4 * 5 + 3 * 4 * 5 = 4 * 5 * 6
Докажем по индукции, что 3 * (f(1) + f(2) + ... + f(n)) = n * (n + 1) * (n + 2).
База индукции при n = 1 уже доказана.
Переход: пусть 3 * (f(1) + ... f(k - 1)) = (k - 1) * k * (k + 1). Докажем, что 3 * (f(1) + ... + f(k)) равно тому, чему нужно.
3 * (f(1) + f(2) + ... + f(k - 1) + f(k)) = (k - 1) * k * (k + 1) + 3 * k * (k + 1) = k (k + 1) (k - 1 + 3) = k (k + 1) (k + 2).
По приницпу математической индукции 3 * (f(1) + f(2) + ... + f(n)) = n * (n + 1) (n + 2) при всех n.
f(1) + f(2) + ... + f(33) = 33 * 34 * 35 / 3 = 13090
2x+y=4 Сложим (1) и (2) ур-ия: 2х+у=4
-2x+3y=4 4у=8
4x+y=7 4х+у=7
Умножим (1) ур. на (-2) и прибавим его к (3) ур-ю:
2х+у=4
у=2
-у=-1 ⇒ у=1
Получаем, что "у" одновременно равен 2 и 1, что невозможно.
Система несовместна .
Решений нет .
(Хоть методом Крамера, хоть другим методом получим, что система не имеет решений) .