Букв у нас 10, 3 буквы А, по 2 буквы М и Т, и по одной Е, И и К. На первую позицию можно ставить одну из десяти букв, на вторую, одну из девяти и т.д. Получим: 10! Найдём количество которыми можно составить слово математика из данного набора букв при учёте позиции той или иной буквы. Е, И и К могут занимать только одну позицию, а вот А, М и Т можно менять местами. Для М и Т это будет 2! и 2!, для А – 3! С учётом порядка позиции их будет: Тогда вероятность (согласно классическому определению):
Попробуем другой, более простой Перестановки с повторением. Всего у нас Перестановка с повторением, которая даёт нам слово "Математика" всего одна, потому мы получаем вероятность:
1 1+(y+1)/(y-2)=(3y+1)/(y+2) Общий знаменатель (у-2)(у+2)≠0⇒y≠2,y≠-2 (y-2)(y+2)+(y+1)(y+2)=(3y+1)(y-2) y²-4+y²+2y+y+2-3y²+6y-y+2=0 -y²+8y=0 -y(y-8)=0 y=0 y=8 2 5-(2y-2)/(y+3)=(y+3)/(y-3) Общий знаменатель (y+3)(y-3)≠0⇒y≠-3,y≠3 5(y+3)(y-3)-(2y-2)(y-3)=(y+3)(y+3) 5y²-45-2y²+6y+2y-6-y²-6y-9=0 2y²+2y-60=0 y²+y-30=0 y1+y2=-1 U y1*y2=-30 y1=-6 U y2=5 3 y/(y+3)-1/(y-3)=18/(y-3)(y+3) Общий знаменатель (y-3)(y+3)≠0⇒y≠3,y≠-3 y(y-3)-(y+3)=18 y²-3y-y-3-18=0 y²-4y-21=0 y1+y2=4 U y1*y2=-21 y1=7 U y2=-3 не удов усл 4 7/(y+2)+8/(y-2)(y+2)=y/(y-2) Общий знаменатель (y-2)(y+2)≠0⇒y≠2,y≠-2 7(y-2)+8=y(y+2) y²+2y-7y+14-8=0 y²-5y+6=0 y1+y2=5 U y1*y2=6 y1=3 U y2=2 не удов усл
На первую позицию можно ставить одну из десяти букв, на вторую, одну из девяти и т.д. Получим: 10!
Найдём количество которыми можно составить слово математика из данного набора букв при учёте позиции той или иной буквы.
Е, И и К могут занимать только одну позицию, а вот А, М и Т можно менять местами.
Для М и Т это будет 2! и 2!, для А – 3!
С учётом порядка позиции их будет:
Тогда вероятность (согласно классическому определению):
Попробуем другой, более простой
Перестановки с повторением.
Всего у нас
Перестановка с повторением, которая даёт нам слово "Математика" всего одна, потому мы получаем вероятность:
1+(y+1)/(y-2)=(3y+1)/(y+2)
Общий знаменатель (у-2)(у+2)≠0⇒y≠2,y≠-2
(y-2)(y+2)+(y+1)(y+2)=(3y+1)(y-2)
y²-4+y²+2y+y+2-3y²+6y-y+2=0
-y²+8y=0
-y(y-8)=0
y=0 y=8
2
5-(2y-2)/(y+3)=(y+3)/(y-3)
Общий знаменатель (y+3)(y-3)≠0⇒y≠-3,y≠3
5(y+3)(y-3)-(2y-2)(y-3)=(y+3)(y+3)
5y²-45-2y²+6y+2y-6-y²-6y-9=0
2y²+2y-60=0
y²+y-30=0
y1+y2=-1 U y1*y2=-30
y1=-6 U y2=5
3
y/(y+3)-1/(y-3)=18/(y-3)(y+3)
Общий знаменатель (y-3)(y+3)≠0⇒y≠3,y≠-3
y(y-3)-(y+3)=18
y²-3y-y-3-18=0
y²-4y-21=0
y1+y2=4 U y1*y2=-21
y1=7 U y2=-3 не удов усл
4
7/(y+2)+8/(y-2)(y+2)=y/(y-2)
Общий знаменатель (y-2)(y+2)≠0⇒y≠2,y≠-2
7(y-2)+8=y(y+2)
y²+2y-7y+14-8=0
y²-5y+6=0
y1+y2=5 U y1*y2=6
y1=3 U y2=2 не удов усл