У нас известно отношение y к x: y/x=-3; Возведем в квадрат, нам это нужно, чтобы найти значение выражения: (y/x)^2=9; Возьмем числитель нашего примера: 3y^2-2xy+x^2; Поделим каждое слагаемое на x^2, чтобы перейти к нашему отношению, сказанному выше. 3*9(-2)*(-3)+1=27+6+1=34. (Минус на минус дают плюс). Теперь разберем знаменатель: x^2+xy-y^2; Так же используя отношение, приведенное выше. Делим все на x^2. 1+(-3)-9=1-3-9=-11. Теперь совместим в нашу дробь и числитель, и знаменатель , получим: -34/11, что соответствует - 3 целым 1/11.
Вероятность попадания в мишень одного стрелка при одном выстреле для первого стрелка равна 0.8, для второго стрелка – 0.85. Стрелки произвели по одному выстрелу в мишень. Считая попадание в цель для отдельных стрелков событиями независимыми, найти вероятность события А – ровно одно попадание в цель.
Решение.
Рассмотрим событие A - одно попадание в цель. Возможные варианты наступления этого события следующие:
Попал первый стрелок, второй стрелок промахнулся: P(A/H1)=p1*(1-p2)=0.8*(1-0.85)=0.12
Первый стрелок промахнулся, второй стрелок попал в мишень: P(A/H2)=(1-p1)*p2=(1-0.8)*0.85=0.17
Первый и второй стрелки независимо друг от друга попали в мишень: P(A/H1H2)=p1*p2=0.8*0.85=0.68
Тогда вероятность события А – ровно одно попадание в цель, будет равна: P(A) = 0.12+0.17+0.68 = 0.97
У нас известно отношение y к x:
y/x=-3;
Возведем в квадрат, нам это нужно, чтобы найти значение выражения:
(y/x)^2=9;
Возьмем числитель нашего примера:
3y^2-2xy+x^2;
Поделим каждое слагаемое на x^2, чтобы перейти к нашему отношению, сказанному выше.
3*9(-2)*(-3)+1=27+6+1=34. (Минус на минус дают плюс).
Теперь разберем знаменатель:
x^2+xy-y^2; Так же используя отношение, приведенное выше.
Делим все на x^2.
1+(-3)-9=1-3-9=-11.
Теперь совместим в нашу дробь и числитель, и знаменатель , получим:
-34/11, что соответствует - 3 целым 1/11.
ответ: -34/11.
Вероятность попадания в мишень одного стрелка при одном выстреле для первого стрелка равна 0.8, для второго стрелка – 0.85. Стрелки произвели по одному выстрелу в мишень. Считая попадание в цель для отдельных стрелков событиями независимыми, найти вероятность события А – ровно одно попадание в цель.
Решение.
Рассмотрим событие A - одно попадание в цель. Возможные варианты наступления этого события следующие:
Попал первый стрелок, второй стрелок промахнулся: P(A/H1)=p1*(1-p2)=0.8*(1-0.85)=0.12
Первый стрелок промахнулся, второй стрелок попал в мишень: P(A/H2)=(1-p1)*p2=(1-0.8)*0.85=0.17
Первый и второй стрелки независимо друг от друга попали в мишень: P(A/H1H2)=p1*p2=0.8*0.85=0.68
Тогда вероятность события А – ровно одно попадание в цель, будет равна: P(A) = 0.12+0.17+0.68 = 0.97
Объяснение: