В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
bagira2912
bagira2912
28.04.2023 20:52 •  Алгебра

решить задачу по алгебре.


решить задачу по алгебре.
решить задачу по алгебре.

Показать ответ
Ответ:
pppooppaoappo
pppooppaoappo
01.12.2021 08:36

6. ㏒₂(㏒₃(2.25*4))=㏒₂(㏒₃3²)=㏒₂2=1

7.  ㏒₉(tg(270°-30°))=㏒₉(Ctg(30°)=㏒₃²(√3))=㏒₃²(3)¹/²=1/4=0.25

8. 3*(1/2)=1.5; ㏒ₐb³=3㏒ₐb=3/(㏒а по основанию b)

9. упростим числитель 2 ㏒²₃2-(㏒₃3²+㏒₃2)²-㏒₃2*(㏒₃2+2㏒₃)=

2㏒₃²2-4-4㏒₃2-㏒₃²2-㏒₃²2-2㏒₃2=-4-6㏒₃2=-2(2+3㏒₃2), упростим знаменатель.  2㏒₃2+2㏒₃3+㏒₃2=(2+3㏒₃2), после сокращения дроби получим -2(2+3㏒₃2)/(2+3㏒₃2),=-2

10. Упростим первую скобку. (6^(㏒₆5))²=5²=25; 10/10^(lg2)=10/2=5

3^(㏒₃²6²)=6, первая скобка примет вид 25+5-6=24;

Вторая скобка : упростим показатель. (-3㏒₃2-1)/㏒₃2=-3-1/㏒₃2

2^(-3-1/㏒₃2)=(1/8)*1/(2^(1/㏒₃2)=(1/8)*1/(2^(㏒₂3)=1/24

24*(1/24)=1

0,0(0 оценок)
Ответ:
damirsemenov2
damirsemenov2
01.12.2021 08:36

Объяснение:

6) log2 (log3 (2,25) + log3 (log2 (16))) = log2 (log3 (9/4) + log3 (4)) = log2 (log3 (9) - log3 (4) + log3 (4)) =

= log2 (log3 (9)) = log2 (2) = 1

7) log9 (tg 240°) = log9 (tg (240° - 180°)) = log9 (tg 60°) = log9 (√3) = log3 (√3) / log3 (9) = (1/2) / 2 = 1/4 = 0,25

Здесь я применил известное свойство:

log_a (b) = log_c (b) / log_c (a)

Причем новое основание с может быть любым, лишь бы с > 0 и с ≠ 1. Я взял с = 3.

8) log_b (a) = 2; log_a (b^3) = 3*log_a (b) = 3/log_b (a) = 3/2 = 1,5

Здесь я применил другое свойство:

log_a (b) = 1 / log_b (a)

9) Во-первых, log3 (18) = log3 (2*9) = log3(2) + log3(9) = log3(2) + 2

Обозначим log3 (2) = x, чтобы проще было писать.

[2x^2 - (x+2)^2 - x(x+2)] / (2x + x + 2) = [2x^2 - (x^2+4x+4) - (x^2+2x)] / (3x+2) = (-4x-4-2x) / (3x+2) =

= -(6x+4) / (3x+2) = -2

10) Решим по действиям.

А) 36^(log6 (5)) = 6^2^(log6 (5)) = 6^(2log6 (5)) = 6^(log6 (25)) = 25.

Это по определению логарифма: Логарифм это показатель степени, в которую надо возвести основание, чтобы получить число под логарифмом.

Мы возвели 6 в степень логарифма и получили число под логарифмом 25.

Б) 10^(1 - lg 2) = 10^1 : 10^(lg 2) = 10 : 2 = 5

В) log9 (36) = log3 (36) / log3 (9) = log3 (6^2) / 2 = 2log3 (6) / 2 = log3 (6)

3^(log3 (6)) = 6

Г) 2^(-3log3 (2) - 1) = 2^(-3log3 (2)) : 2

(2^(-3log3(2) : 2)^(log3(2)^(-1)) = 2^(-3log3(2) / log3(2)) = 2^(-3) = 1/8

Подставляем все найденное в исходный пример:

(25 + 5 - 6) * 1/8 = 24/8 = 3

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота