29 км/час скорость лодки в стоячей воде
Лодка по течению до встречи 67,2 (км)
Лодка против течения до встречи 54,6 (км)
Объяснение:
Задача2.
х = скорость лодки в стоячей воде.
х + 3 - скорость лодки по течению.
х - 3 - скорость лодки против течения.
Общая скорость лодок до встречи: 121,8 (общее расстояние) : 2,1 (общее время) = 58 (км/час).
(х + 3) + (х - 3) = 58
2х = 58
х = 29 (скорость лодки в стоячей воде).
Лодка по течению до встречи: (29 + 3) * 2,1 = 67,2 (км)
Лодка против течения до встречи: (29 - 3) * 2,1 = 54,6 (км)
Проверка: 67,2+54,6=121,8 (км), всё верно.
Уравнение
3у/8-14 = -13+y/8 Избавляемся от дробного выражения, общий знаменатель 8:
3у-8*14= 8 8(-13)+у
3у-112= -104+у
3у-у= -104+112
2у=8
у=4
Представим в виде:
x*y'-y = x³
Это неоднородное дифференциальное уравнение первого порядка.
Сделаем замену переменных:
y=u*x, y' = u'x + u.
где u - функция аргумента х.
x(u+u'x) - u*x = x³
xu + u'x² - u*x = x³
u'x² = x³
Представим в виде:
u' = x
Интегрируя, получаем:
Учитывая, что y = u*x, получаем:
29 км/час скорость лодки в стоячей воде
Лодка по течению до встречи 67,2 (км)
Лодка против течения до встречи 54,6 (км)
Объяснение:
Задача2.
х = скорость лодки в стоячей воде.
х + 3 - скорость лодки по течению.
х - 3 - скорость лодки против течения.
Общая скорость лодок до встречи: 121,8 (общее расстояние) : 2,1 (общее время) = 58 (км/час).
(х + 3) + (х - 3) = 58
2х = 58
х = 29 (скорость лодки в стоячей воде).
Лодка по течению до встречи: (29 + 3) * 2,1 = 67,2 (км)
Лодка против течения до встречи: (29 - 3) * 2,1 = 54,6 (км)
Проверка: 67,2+54,6=121,8 (км), всё верно.
Уравнение
3у/8-14 = -13+y/8 Избавляемся от дробного выражения, общий знаменатель 8:
3у-8*14= 8 8(-13)+у
3у-112= -104+у
3у-у= -104+112
2у=8
у=4