Войти
Регистрация
Спроси ai-bota
В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Показать больше
Показать меньше
katytucan1
11.05.2023 23:28 •
Алгебра
Решите ) 1)lim (x^3-+4x^2+5x+2)/(x^3-3x-2) x-> -1 2)lim ln(1-3x)/((sqrt8x+4)-2) x-> 0 3)lim (4^x-2^7x)/(tg3x-x) x-> 0 4)lim (sin2x/sin3x)^x2 x-> 0
Показать ответ
Ответ:
немагистор
02.10.2020 23:07
Решение
1) Lim (x^3-+4x^2+5x+2)/(x^3-3x-2)
x->-1
x³ - 3x - 2 = 0
x = - 1
x³ - 3x - 2 I x + 1
-(x³ + x²) x² - x - 2 = (x + 1)(x - 2)
- x² - 3x
-(-x ² - x)
- 2x - 2
-(-2x - 2)
0
x³ - 3x - 2 = (x + 1)*(x + 1) (x + 2) = (x + 1)²(x - 2)
x^3+4x^2+5x+2 = 0
x = - 1
x³ + 4x² + 5x + 2 I x + 1
-(x³ + x²) x² + 3x + 2 = (x + 1)(x + 2)
3x² + 5x
-(3x² + 3x)
2x + 2
-(2x + 2)
0
x³ + 4x² + 5x + 2 = (x + 1)²(x + 2)
limx-->- 1 [ (x + 1)²(x + 2)] / [(x + 1)²(x - 2)] =
= limx-->- 1 (x + 2) / (x - 2) = - (1 /3 )
2) Lim ln(1-3x)/((sqrt8x+4)-2)
x->0
Используем правило Лопиталя. Будем брать производные от числителя и знаменателя до тех пор, пока не избавимся от неопределённости.
[ln(1 - 3x)]` = - 3/(1-3x)
[√(8x + 4) - 2]` = 8/2√(8x + 4) = 4/√(8x + 4)
limx-->0 [- 3*√(8x + 4] / [4*(1 - 3x) = - 6/4 = - 3/2
3) lim (4^x-2^7x)/(tg3x-x)
x->0
(4^x-2^7)` = 4^x*ln4 - 2^7x*ln2
limx-->0 (4^x*ln4 - 2^7x*ln2 ) = 4ln4 - 2ln2
(tg3x - x)` = 3/cos3x - 1
limx--> 0 (3/cos3x - 1) = 3 - 1 = 2
lim x-->0 (4^x-2^7x)/(tg3x-x) = (4ln4 - 2ln2)/2 = 2ln4 - ln2
4) lim x--> 0 (sin2x/sin3x)^x2
применим первый замечательный предел: [ limx--> 0 sinx/x = 1 ]
lim x--> 0 [2*(sin2x/2x)] * limx--> 0 [(1/3)*(sin3x)/3x] = 2/3
=
0,0
(0 оценок)
Популярные вопросы: Алгебра
Antik3006
05.05.2023 18:10
Решите задачу с системы уравнений, Прямоугольный газон обнесен изгородью, длина которой 32 м. Площадь газона 60 м2. Найдите длины сторон газона?...
tokufoveru
24.02.2020 09:27
решить. Для контрольной работы 1) Интеграл от точки 0 до Пи/12 (1-cos2x)dx 2) интеграл от точки 0 до 2 (1+2x)dx...
ONO2017
17.09.2022 13:50
Вычислите значение выражения:...
ОВОВОВОВо
24.08.2021 04:46
на мартовских каникулах семьи петровых фроловых алексеевых боевых михайловых решили посетить различные достопримечательности Карелии остров Валаам остров Кижи водопад Кивач парк паанаярви...
maxradew
10.03.2021 01:52
ОЧЕНЬ СОЧ В роте пятнадцать солдат, три офицера и шесть сержантов. На охрану объектов необходимо выделить 10 солдат, двух сержантов и одного офицера. Сколько существует вариантов составить...
Лютаяяяя
01.03.2021 03:31
299. С каким значениями график функции будет выше оси...
ArbuzovAndrey
22.03.2020 01:09
296. Решите Показательные неравенства c) f) i) l) o)...
artems242
10.12.2022 04:09
298. Решите показательное неравенство, пользуясь заменой c) f) i)...
yaroslav198395
11.07.2022 22:09
Подробное решение 18 и 19 номера...
simpolita
23.06.2020 09:34
Знайдіть проміжки зростання і спадання та точки екстремуму функції, задание закреплено,...
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota
Оформи подписку
О НАС
О нас
Блог
Карьера
Условия пользования
Авторское право
Политика конфиденциальности
Политика использования файлов cookie
Предпочтения cookie-файлов
СООБЩЕСТВО
Сообщество
Для школ
Родителям
Кодекс чести
Правила сообщества
Insights
Стань помощником
ПОМОЩЬ
Зарегистрируйся
Центр помощи
Центр безопасности
Договор о конфиденциальности полученной информации
App
Начни делиться знаниями
Вход
Регистрация
Что ты хочешь узнать?
Спроси ai-бота
1) Lim (x^3-+4x^2+5x+2)/(x^3-3x-2)
x->-1
x³ - 3x - 2 = 0
x = - 1
x³ - 3x - 2 I x + 1
-(x³ + x²) x² - x - 2 = (x + 1)(x - 2)
- x² - 3x
-(-x ² - x)
- 2x - 2
-(-2x - 2)
0
x³ - 3x - 2 = (x + 1)*(x + 1) (x + 2) = (x + 1)²(x - 2)
x^3+4x^2+5x+2 = 0
x = - 1
x³ + 4x² + 5x + 2 I x + 1
-(x³ + x²) x² + 3x + 2 = (x + 1)(x + 2)
3x² + 5x
-(3x² + 3x)
2x + 2
-(2x + 2)
0
x³ + 4x² + 5x + 2 = (x + 1)²(x + 2)
limx-->- 1 [ (x + 1)²(x + 2)] / [(x + 1)²(x - 2)] =
= limx-->- 1 (x + 2) / (x - 2) = - (1 /3 )
2) Lim ln(1-3x)/((sqrt8x+4)-2)
x->0
Используем правило Лопиталя. Будем брать производные от числителя и знаменателя до тех пор, пока не избавимся от неопределённости.
[ln(1 - 3x)]` = - 3/(1-3x)
[√(8x + 4) - 2]` = 8/2√(8x + 4) = 4/√(8x + 4)
limx-->0 [- 3*√(8x + 4] / [4*(1 - 3x) = - 6/4 = - 3/2
3) lim (4^x-2^7x)/(tg3x-x)
x->0
(4^x-2^7)` = 4^x*ln4 - 2^7x*ln2
limx-->0 (4^x*ln4 - 2^7x*ln2 ) = 4ln4 - 2ln2
(tg3x - x)` = 3/cos3x - 1
limx--> 0 (3/cos3x - 1) = 3 - 1 = 2
lim x-->0 (4^x-2^7x)/(tg3x-x) = (4ln4 - 2ln2)/2 = 2ln4 - ln2
4) lim x--> 0 (sin2x/sin3x)^x2
применим первый замечательный предел: [ limx--> 0 sinx/x = 1 ]
lim x--> 0 [2*(sin2x/2x)] * limx--> 0 [(1/3)*(sin3x)/3x] = 2/3
=