Поскольку модуль слева это модуль от суммы положительного числа 3 и модуля, то большой модуль положителен и раскрывается как уравнение вида abs(x+2)+3=4 и решается как abs(x+2)=1 и x+2=1 или x-2=-1. а если бы у тебя было бы уравнение abs(abs(x+2)-3)=4, то пришлось бы рассмотреть уравнения abs(x+2)=4 и abs(x+2)=-4 только когда у тебя по модулем находится сумма положительного числа и модуля от выражения, содержащего переменную x ты рассматриваешь уравнение в варианте (заменяешь скобки модуля на обычные скобки) поскольку при сложении положительного числа и модуля какого-либо выражения их сумма не может быть отрицательна.
1920; 1984
Объяснение:
Ясно, что n > k
Предположим, что n>2^11 = 2048, но тогда
min(2^n - 2^k) = 2^12 - 2^11 =2048 (min - минимально возможно значение)
Это нас не устраивает, ибо XX век это все года принадлежащие промежутку: [1901; 2000]
Аналогично, если n<2^11, то
max(2^n - 2^k) = 2^10 - 2^1 =1022 (max - максимально возможное значение)
Это так же не укладывается в интервал: [1901; 2000]
Таким образом, n = 2^11, а для k тогда остается только два варианта:
k= 6; 7
То есть существует только два таких года:
1) 2^11 - 2^6 = 2048 - 64 = 1984
2) 2^11 - 2^7 = 2048 - 128 = 1920
Если не помните наизусть, приложил табличку степеней двоек.