Решите 209 (г) Упражнения
Найдите производные функций (208-211).
б) f (x) = 1 + 5x - 2;
в) f (x) = х2 + 3х - 1;
г) f (x) = x3+х.
209. - а) f (x) = x3 (4 + 2х
х?); * б) f (x) = (х (2x? - x);
в) f (x) = х2 (3х + 3);
г) f (x) = (2x – 3) (1 - x*).
1 + 2х
2
3x 2
3 - 4 x
210. а) у
б) у =) в) у
г) у
3 - 5x
Бх+8"
2
211. Va) у = х - 3x4 - + 5;
б) у =
+ ух;
3
2х - 13
7
3
х2
Arb
2
{-17х² + 13у² - 220 = 0
Из первого уравнения х = 13у - 110
Вместо х подставим во второе уравнение
- 17 * (13у - 110)² + 13у² - 220 = 0
- 17 * (169у² - 2860у + 12100) + 13у² - 220 = 0
- 2873у² + 48620у - 205700 + 13у² - 220 = 0
- 2860у² + 48620у - 205920 = 0
Сократив на (- 2860), имеем
у² - 17у + 72 = 0
D = 289 - 4 * 1 * 72 = 289 - 288 = 1
√D = √1 = 1
у₁ = (17 + 1)/2 = 9
у₂ = (17 - 1)/2 = 8
При у₁ = 9 находим х₁ = 13*9 - 110 = 117 - 110 = 7 Первое решение {7; 9}
При у₂ = 8 находим х₂ = 13*8 - 110 = 104 - 110 = - 6 Второе решение {-6; 8}
ответ: {7; 9} и {-6; 8}
2 задание
n-m =(a-2)²
p-n=(b-3)²
m-p=(c-4)²
Извлекаем корни из обеих частей каждого равенства
√(n-m) = √(a-2)²
√(p-n) = √(b-3)²
√(m-p) = √(c-4)²
Получаем
√(n-m) = a-2
√(p-n) = b-3
√(m-p) = c-4
Складываем все эти три равенства
√(n-m) + √(p-n) + √(m-p) = a + b + c - 2 - 3 - 4
√(n-m) + √(p-n) + √(m-p) = a + b + c - 9
√(n-m) + √(p-n) + √(m-p) + 9 = a + b + c
Искомая сумма получена
a + b + c = √(n-m) + √(p-n) + √(m-p) + 9