1) x+8=25 - возводим обе части в квадрат, чтобы избавиться от корня
x=25-8=17
2) 6x-8=x^2
-x^2+6x-8=0 | (-1)
x^2-6x+8=0
x(x-2)-4(x-2)=0
(x-2)(x-4)=0
х= 2 или x=4
3) 3x+7=49-14x+x^2
3x+7-49+14x-x^2=0
17x-42-x^2=0
x^2-17x+42=0
x*(x-3)-14*(x-3)=0
(x-3)(x-14)=0
Подставим: 3 +корень(3*3+7)=7
7=7
14+корень(3*14+7)=7
21=7 не подходит
ответ: х=3
4) 6x^2-3=5x-2
6x^2-5x-1=0
x(6x+1)-(6x+1)0=
(6x+1)(x-1)=0
x=-1/6 или x=1
Проверяем: подставишь в исходное уравнение и поймёшь, что -1/6 не подходит.
ответ: 1
5) 8-корень(x)=-3x-5
64x=9x^2+30x+25
34x-9x^2-25=0
9x^2-34x+25=0
9x(x-1)-25(x-1)=0
(x-1)(9x-25)=0
x=1 или x=25/9
Подставишь и поймёшь, что оба подходят.
ответ: 1, 25/9
6) Находим область допустимых значений:
x^2-7x<0
x ∈ (0;7)
Выражение верно для любого значения х, так как функция корня всегда положительна или равна 0.
ответ: (-∞;0]∪[7;+∞)
Свойства сложения:
1. Переместительное (коммутативное) свойство сложения: от перемены мест слагаемых сумма не меняется
Запись в общем виде с букв: a + b = b +a
Это свойство позволяет менять местами слагаемые
Пример: 12 + 5 = 5 + 12
2. Сочетательное (ассоциативное) свойство сложения: от изменения расстановки скобок сумма не меняется:
Запись в общем виде с букв: (а + b) + с = a + (b + с)
Применяя сочетательное свойство, мы можем изменять порядок действий так, чтобы выполнить их более удобным
Пример: (23 + 11) + 89 = 23 + (11 + 89) = 23 + 100 = 123
3. Свойство нуля при сложении: если к числу прибавить нуль, получится само число.:
Запись в общем виде с букв а + 0 = а
Пример: 5 + 0 = 5
Свойства умножения
1. Переместительное (коммутативное) - от перемены мест множителей произведение не меняется.
Запись в общем виде с букв a · b = b ·a
Переместительное свойство умножения позволяет менять местами множители
Примеры: 12 · 5 = 5 · 12
2. Сочетательное (ассоциативное) свойство: от изменения расстановки скобок произведение не меняется
Запись в общем виде с букв (а· b) · с = a· (b · с)
Пример: (12 · 4) · 25 = 12 ·(4 · 25) = 12 · 100 = 1200
3. Распределительное свойство умножения относительно сложения: Чтобы умножить число на сумму двух чисел, надо это число умножить на каждое слагаемое и полученные результаты сложить.
Запись в общем виде с букв: a · (b + c) = a · b + a · c
Пример: 4 · (25 + 60) = 4 · 25 + 4 · 60 = 100 + 240 = 340
4. Свойство нуля при умножении: если число умножить на ноль, то получится ноль
Запись в общем виде с букв а · 0 = 0
Пример: 5 · 0 = 0
5. Свойство единицы при умножении: если число умножить на единицу, то получится само число
Запись в общем виде с букв: а · 1 = а
Пример: 5 · 1 = 5
1) x+8=25 - возводим обе части в квадрат, чтобы избавиться от корня
x=25-8=17
2) 6x-8=x^2
-x^2+6x-8=0 | (-1)
x^2-6x+8=0
x(x-2)-4(x-2)=0
(x-2)(x-4)=0
х= 2 или x=4
3) 3x+7=49-14x+x^2
3x+7-49+14x-x^2=0
17x-42-x^2=0
x^2-17x+42=0
x*(x-3)-14*(x-3)=0
(x-3)(x-14)=0
Подставим: 3 +корень(3*3+7)=7
7=7
14+корень(3*14+7)=7
21=7 не подходит
ответ: х=3
4) 6x^2-3=5x-2
6x^2-5x-1=0
x(6x+1)-(6x+1)0=
(6x+1)(x-1)=0
x=-1/6 или x=1
Проверяем: подставишь в исходное уравнение и поймёшь, что -1/6 не подходит.
ответ: 1
5) 8-корень(x)=-3x-5
64x=9x^2+30x+25
34x-9x^2-25=0
9x^2-34x+25=0
9x(x-1)-25(x-1)=0
(x-1)(9x-25)=0
x=1 или x=25/9
Подставишь и поймёшь, что оба подходят.
ответ: 1, 25/9
6) Находим область допустимых значений:
x^2-7x<0
x ∈ (0;7)
Выражение верно для любого значения х, так как функция корня всегда положительна или равна 0.
ответ: (-∞;0]∪[7;+∞)
Свойства сложения:
1. Переместительное (коммутативное) свойство сложения: от перемены мест слагаемых сумма не меняется
Запись в общем виде с букв: a + b = b +a
Это свойство позволяет менять местами слагаемые
Пример: 12 + 5 = 5 + 12
2. Сочетательное (ассоциативное) свойство сложения: от изменения расстановки скобок сумма не меняется:
Запись в общем виде с букв: (а + b) + с = a + (b + с)
Применяя сочетательное свойство, мы можем изменять порядок действий так, чтобы выполнить их более удобным
Пример: (23 + 11) + 89 = 23 + (11 + 89) = 23 + 100 = 123
3. Свойство нуля при сложении: если к числу прибавить нуль, получится само число.:
Запись в общем виде с букв а + 0 = а
Пример: 5 + 0 = 5
Свойства умножения
1. Переместительное (коммутативное) - от перемены мест множителей произведение не меняется.
Запись в общем виде с букв a · b = b ·a
Переместительное свойство умножения позволяет менять местами множители
Примеры: 12 · 5 = 5 · 12
2. Сочетательное (ассоциативное) свойство: от изменения расстановки скобок произведение не меняется
Запись в общем виде с букв (а· b) · с = a· (b · с)
Пример: (12 · 4) · 25 = 12 ·(4 · 25) = 12 · 100 = 1200
3. Распределительное свойство умножения относительно сложения: Чтобы умножить число на сумму двух чисел, надо это число умножить на каждое слагаемое и полученные результаты сложить.
Запись в общем виде с букв: a · (b + c) = a · b + a · c
Пример: 4 · (25 + 60) = 4 · 25 + 4 · 60 = 100 + 240 = 340
4. Свойство нуля при умножении: если число умножить на ноль, то получится ноль
Запись в общем виде с букв а · 0 = 0
Пример: 5 · 0 = 0
5. Свойство единицы при умножении: если число умножить на единицу, то получится само число
Запись в общем виде с букв: а · 1 = а
Пример: 5 · 1 = 5