Двузначное число записанное двумя цифрами, например, 68=6·10+8 Поэтому двузначное число, записанное двумя цифрами х и у это 10х + у. Если приписать цифру 2 справа, то получится трёхзначное число 100х + 10у + 2, которое в 9 раз больше задуманного двузначного (10х + у) 100х + 10у + 2 = 9(10х + у) 100х + 10у + 2 = 90х + 9у, 100х-90х+10у-9у = -2 10х+у = - 2 Это уравнение не имеет решения х и у - цифры, они положительны и равняться -2 не могут
Если приписать цифру 2 слева, то получится трёхзначное число 200+10х+у, которое в 9 раз больше задуманного двузначного (10х+у) 200+10х+у = 9·(10х+у) 200+10х+у-90х-9у=0 80х+8у=200 40х+4у=100 х=2 у=5 ответ. 25 Число 225 больше 25 в 9 раз
Пусть вся работа 1 Путь одному рабочему на всю работу нужно х дней, тогда второму (х-5) дней. Т.к. первый делает всю работу за х дней, то за 1 день он делает 1/х часть работы Т.к. второй рабочий делает всю работу за (х-5) дней , то за 1 день он делает 1/(х-5) часть работы Работали рабочие вместе 6 дней, значит они сделали вместе 6/х+6/(х-5), что по условию задачи является всей работой, получим уравнение 6/х+6/(х-5)=1 6*(х-5)+6х=х(х-5) 6х-30+6х=х²-5х х²-17х+30=0 D=(-17)²-4*1*30=169=(13)² х₁=(17+13)/2=15, х₂=(17-13)/2=2(посторонний корень, не удовлетворет условию задачи) Т.о. первый рабочий может сделать всю работу сам за 15 дней, второй за 15-5=10 дней ответ: 15 дней и 10 дней
68=6·10+8
Поэтому двузначное число, записанное двумя цифрами х и у
это
10х + у.
Если приписать цифру 2 справа, то получится трёхзначное число
100х + 10у + 2, которое в 9 раз больше задуманного двузначного (10х + у)
100х + 10у + 2 = 9(10х + у)
100х + 10у + 2 = 90х + 9у,
100х-90х+10у-9у = -2
10х+у = - 2
Это уравнение не имеет решения
х и у - цифры, они положительны и равняться -2 не могут
Если приписать цифру 2 слева, то получится трёхзначное число
200+10х+у, которое в 9 раз больше задуманного двузначного (10х+у)
200+10х+у = 9·(10х+у)
200+10х+у-90х-9у=0
80х+8у=200
40х+4у=100
х=2
у=5
ответ. 25
Число 225 больше 25 в 9 раз