Можно увеличить значение выражения, если умножить 8 на наибольшее число. Но также благодаря делению мы можем уменьшить значение, поэтому сразу делить - плохая идея. Стоит заметить, что в конце стоит -2, и поэтому мы сможем разделить на наименьшее из возможных чисел (ну, кроме нуля, конечно), т.е на (3-2) = 1.
Итого получаем: (8*12+18):(3-2)
Выгодней будет поставить скобки так (8*(12+18)):(3-2), потому что 18 > 12, и увеличивая число, на которое мы умножаем, мы максимально увеличили произведение.
Мы максимально уменьшили делитель и максимально увеличили делимое, следовательно - (8*(12+18)):(3-2) - наибольший из возможных вариантов.
Объяснение:
Рациональным называется число, которое можно записать простой дробью: q / s, где q - целое, s - натуральное.
Разность рациональных чисел - это рациональное число.
Доказательство:
k/m - n/p = (kp - mn) / mp = q / s,
где q = kp - mn (целое), s = mp (натуральное)
a^2 и b^2 - рациональные числа.
Значит, их разность также является рациональным числом.
Разложим разность квадратов:
a^2 - b^2 = (a - b)(a + b)
Отсюда a + b = (a^2 - b^2) / (a - b)
Это частное рациональных чисел.
Выясним, является ли рациональным частное рациональных чисел.
(k/m) / (n/p) = kp / mn = q / s,
где q = kp (целое), s = mn (натуральное)
при условии, что n/p (делитель) не равен 0.
Да: частное рациональных чисел также рационально.
a + b = (a^2 - b^2) / (a - b) - это частное, в котором делитель (a - b) не равен 0 (так как a не равно b).
Следовательно, a + b - рациональное число, ч. т. д.
( 8 * ( 12 + 18 ) ) : ( 3 - 2 )
Объяснение:
Можно увеличить значение выражения, если умножить 8 на наибольшее число. Но также благодаря делению мы можем уменьшить значение, поэтому сразу делить - плохая идея. Стоит заметить, что в конце стоит -2, и поэтому мы сможем разделить на наименьшее из возможных чисел (ну, кроме нуля, конечно), т.е на (3-2) = 1.
Итого получаем: (8*12+18):(3-2)
Выгодней будет поставить скобки так (8*(12+18)):(3-2), потому что 18 > 12, и увеличивая число, на которое мы умножаем, мы максимально увеличили произведение.
Мы максимально уменьшили делитель и максимально увеличили делимое, следовательно - (8*(12+18)):(3-2) - наибольший из возможных вариантов.