Войти
Регистрация
Спроси ai-bota
В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Показать больше
Показать меньше
вап27
12.06.2022 02:18 •
Алгебра
Решите двойное неравенство:
а) –1 < 7 + 2y < 4;
б) 4 < 8 – 3x ≤ 10;
в) 0 <
≤ 5
г) 2 <
< 3
Показать ответ
Ответ:
aaaaaa251
09.02.2020 10:47
Для удобства поменяем местами оси:
1) x^2 = 6y, y1 = x^2 / 6
2) x^2 = -4(y-5), y2 = -x^2 / 4 +5
Найдем точки пересечения с 0x:
y2 - y1 = -x^2 / 4 + 5 - x^2 / 6 = -5x^2 / 12 + 5 = -5/12 * (x^2 - 12) = -5/12 * (x - 2√3) * (x + 2√3).
Точки пересечения: -2√3 и 2√3.
Площадь фигуры между графиками этих функций равна определенному интегралу от -2√3 до 2√3 от разности этих функций y2-y1. Разность y2-y1 > 0 между точками -2√3 и 2√3, поэтому берем y2-y1, а не y1-y2.
∫(-5/12 * (x^2 - 12))dx = -5/12 * (x^3 / 3 - 12x) + const
Подставим границы:
(-5/12 * ((2√3)^3 / 3 - 12*(2√3))) - (-5/12 * ((-2√3)^3 / 3 - 12*(-2√3))) = 40√3/3
0,0
(0 оценок)
Ответ:
Оно8885858855
16.06.2022 15:01
Можно и индукцией доказать:
База индукции:
При n = 1:
1/(1*2) = 1/(1+1) - верно.
Предположение индукции:
Пусть при n = k верно следующее:
1/(1*2) + ,,, + 1/(k*(k+1)) = k / (k+1)
Индукционный переход:
Докажем, что 1/(1*2) + ,,, + 1/(k*(k+1)) + 1/((k+1)(k+2)) = (k+1) / (k+2)
Заменим 1/(1*2) + ,,, + 1/(k*(k+1)) на k / (k+1), так как мы предположили верность этого равенства. Тогда должно выполняться следующее:
k / (k+1) + 1/((k+1)(k+2)) = (k+1) / (k+2)
Упростим левую часть:
k / (k+1) + 1/((k+1)(k+2)) = k*(k+2) / ((k+1)(k+2)) + 1/((k+1)(k+2)) = (k^2+2k+1)/((k+1)(k+2))=(k+1)^2 / ((k+1)(k+2)) = (k+1)/(k+2).
(k+1)/(k+2) = (k+1)/(k+2) - тождество, ч.т.д.
0,0
(0 оценок)
Популярные вопросы: Алгебра
z0mD
14.05.2020 22:52
Решить неравенства 9х 63 -6х≤ 33 х/7 5...
solodkin1978
06.02.2023 16:01
Разложить на множители 8-ув кубе 25х-х в квадрате...
innapuna8
16.05.2022 22:13
Сократите дробь 5х^2+30х+45/ 10х^2-90 решить ! люди не проходите мимо! у меня сор а я ничего не...
marinamashkina2
16.05.2022 22:13
Знайдiть суму 5 перших членiв прогресии 5, 10...
112303
16.05.2022 22:13
Гіпотеза прямокутного трикутника більша від одного катета на 2 см, а від другого катета на 9 см. знайти периметр трикутника....
viktoria20000000
16.05.2022 22:13
Решите уравнение 7х+4 дробь 10 - 8х+6 дробь 5 =1...
Fedotaq
13.11.2021 15:55
Найдите наименьшее значение функции y=13+6cosx+(24/π)*x на отрезке [-2п/3; 0]....
zhanara0507
26.03.2023 13:59
Представьте в виде многочлена x^2 + ( 5x-2 )^2 (3a+4b)^2 - 9a^2 (x+y) • (x-y ) • (x^2 - y^2 )...
kristipus2003
30.04.2023 11:15
1. выражение: 1/х+1 - 2/х-2 +3/х-1 2. найдите значение выражения 1/b-3 + 3b^2/27-b^3 + 3/ b^2 + 3b+9 при b= 2,5...
popovichmilanap06lkc
30.04.2023 11:15
3х-2(х-1)=х+2 только с тренировки! сильно упала с лошади! голова болит! решить заранее ! )...
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota
Оформи подписку
О НАС
О нас
Блог
Карьера
Условия пользования
Авторское право
Политика конфиденциальности
Политика использования файлов cookie
Предпочтения cookie-файлов
СООБЩЕСТВО
Сообщество
Для школ
Родителям
Кодекс чести
Правила сообщества
Insights
Стань помощником
ПОМОЩЬ
Зарегистрируйся
Центр помощи
Центр безопасности
Договор о конфиденциальности полученной информации
App
Начни делиться знаниями
Вход
Регистрация
Что ты хочешь узнать?
Спроси ai-бота
1) x^2 = 6y, y1 = x^2 / 6
2) x^2 = -4(y-5), y2 = -x^2 / 4 +5
Найдем точки пересечения с 0x:
y2 - y1 = -x^2 / 4 + 5 - x^2 / 6 = -5x^2 / 12 + 5 = -5/12 * (x^2 - 12) = -5/12 * (x - 2√3) * (x + 2√3).
Точки пересечения: -2√3 и 2√3.
Площадь фигуры между графиками этих функций равна определенному интегралу от -2√3 до 2√3 от разности этих функций y2-y1. Разность y2-y1 > 0 между точками -2√3 и 2√3, поэтому берем y2-y1, а не y1-y2.
∫(-5/12 * (x^2 - 12))dx = -5/12 * (x^3 / 3 - 12x) + const
Подставим границы:
(-5/12 * ((2√3)^3 / 3 - 12*(2√3))) - (-5/12 * ((-2√3)^3 / 3 - 12*(-2√3))) = 40√3/3
База индукции:
При n = 1:
1/(1*2) = 1/(1+1) - верно.
Предположение индукции:
Пусть при n = k верно следующее:
1/(1*2) + ,,, + 1/(k*(k+1)) = k / (k+1)
Индукционный переход:
Докажем, что 1/(1*2) + ,,, + 1/(k*(k+1)) + 1/((k+1)(k+2)) = (k+1) / (k+2)
Заменим 1/(1*2) + ,,, + 1/(k*(k+1)) на k / (k+1), так как мы предположили верность этого равенства. Тогда должно выполняться следующее:
k / (k+1) + 1/((k+1)(k+2)) = (k+1) / (k+2)
Упростим левую часть:
k / (k+1) + 1/((k+1)(k+2)) = k*(k+2) / ((k+1)(k+2)) + 1/((k+1)(k+2)) = (k^2+2k+1)/((k+1)(k+2))=(k+1)^2 / ((k+1)(k+2)) = (k+1)/(k+2).
(k+1)/(k+2) = (k+1)/(k+2) - тождество, ч.т.д.