выделением неполного квадрата): y=x²-4x+9 Выделяем неполный квадрат: y=x²-4x+9=(х²-4х+4)-4+9=(х-2)²+5 Далее рассуждаем так: (х-2)²≥0 при любых х∈(-∞;+∞) и 5 > 0. Следовательно, (х-2)²+5 > 0 Значит, у=x²-4x+9 > 0 Что и требовалось доказать
основан на геометрических представления): Докажем, что х²-4х+9>0 1)Находим дискриминант квадратичной функции: D=(-4)²-4*1*9=16-36=-20 <0 => нет точек пересечения с осью Ох 2)Графиком функции у=х²-4х+9 является парабола, ветви которой направлены вверх, т.к. а=1 > 0 Следовательно, вся парабола расположена выше оси Ох Это означает, что данная функция принимает только положительные значения. Что и требовалось доказать.
Пусть х км/ч - собственная скорость лодки в стоячей воде, у км/ч - скорость течения реки, Значит, (х+у) км/ч - скорость лодки по течению реки, (х-у) км/ч - скорость лодки против течения реки. По условию задачи, известно, что лодка, за 5 ч по течению тот же путь, что за 7 часов против течения реки. Составляем уравнение: 5(x+y)=7(x-y) 5x+5y=7x-7y 5y+7y=7x-5x 12y=2x 6y=x Итак, х+у=6у+у=7у - скорость лодки по течению реки, х-у =6у-у=5у - скорость лодки против течения реки. Тогда 63/7у = 9/у час - время лодки на движение по течению реки, 45/5у =9/у час - время лодки на движение против течения реки. По условию задачи, на весь путь лодка затратила 6 часов. Составим уравнение: 9/у + 9/у = 6 (2*9)/у=6 18/у=6 у=18/6 у=3 (км/ч) - скорость течения реки х=6*3=18 (км/ч) - собственная скорость лодки
y=x²-4x+9
Выделяем неполный квадрат:
y=x²-4x+9=(х²-4х+4)-4+9=(х-2)²+5
Далее рассуждаем так:
(х-2)²≥0 при любых х∈(-∞;+∞) и 5 > 0. Следовательно, (х-2)²+5 > 0
Значит, у=x²-4x+9 > 0
Что и требовалось доказать
основан на геометрических представления):
Докажем, что х²-4х+9>0
1)Находим дискриминант квадратичной функции:
D=(-4)²-4*1*9=16-36=-20 <0 => нет точек пересечения с осью Ох
2)Графиком функции у=х²-4х+9 является парабола, ветви которой направлены
вверх, т.к. а=1 > 0
Следовательно, вся парабола расположена выше оси Ох
Это означает, что данная функция принимает только положительные значения.
Что и требовалось доказать.
у км/ч - скорость течения реки,
Значит, (х+у) км/ч - скорость лодки по течению реки,
(х-у) км/ч - скорость лодки против течения реки.
По условию задачи, известно, что лодка, за 5 ч по течению тот же путь, что за 7 часов против течения реки.
Составляем уравнение:
5(x+y)=7(x-y)
5x+5y=7x-7y
5y+7y=7x-5x
12y=2x
6y=x
Итак, х+у=6у+у=7у - скорость лодки по течению реки,
х-у =6у-у=5у - скорость лодки против течения реки.
Тогда 63/7у = 9/у час - время лодки на движение по течению реки,
45/5у =9/у час - время лодки на движение против течения реки.
По условию задачи, на весь путь лодка затратила 6 часов.
Составим уравнение:
9/у + 9/у = 6
(2*9)/у=6
18/у=6
у=18/6
у=3 (км/ч) - скорость течения реки
х=6*3=18 (км/ч) - собственная скорость лодки