В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Зайка9870
Зайка9870
13.02.2022 14:40 •  Алгебра

Решите графически уравнение: 4х^2-х+4=0

х^2-4х+4=0

! Мне надо до завтра!

Показать ответ
Ответ:
joje1
joje1
26.10.2021 19:36
Для начала найдём, при каких значениях m корни вообще есть. Для этого D≥0.
D = b^2-4ac=(2(4m-1))^2-4(4m+1)=4(16m^2-8m+1)- \\ -16m-4=64m^2-32m+4-16m-4=64m^2-48m
64m^2-48m \geq 0 \\ 16m(4m-3) \geq 0 \\ m(4m-3) \geq 0 \\ m(4m-3)=0 \\ m=0; 0.75
Решая методом интервалов, получаем: m\in(-\infty; 0]\cup[0.75; +\infty). Это наша ОДЗ.

По теореме Виета
\left \{ {{x_{1}+x_{2}=-2(4m-1)} \atop {x_{1}x_{2}=4m+1}} \right.
Попробуем подогнать сумму квадратов корней под теорему Виета:
x_{1}^{2}+x_{2}^{2}=x_{1}^{2}+2x_{1}x_{2}+x_{2}^{2}-2x_{1}x_{2}=(x_{1}+x_{2})^2-2x_{1}x_{2}
Подставляем:
(-2(4m-1))^2-2(4m+1)=64m^2-32m+4-8m-2= \\ =64m^2-40m+2
Это парабола, ветви направлены вверх, значит, её точка минимума находится в её вершине. Если она принадлежит ОДЗ, то это и будет ответом, если нет - то либо 0, либо 0.75 (концы отрезков ОДЗ).
x_{0}= \frac{-b}{2a} = \frac{40}{128} = \frac{10}{32}
0\ \textless \ \frac{10}{32} \ \textless \ \frac{3}{4} ( \frac{24}{32} ) - не подходит. Проверяем концы отрезков:
При m = 0 сумма квадратов корней будет равна 2.
При m = 0.75 сумма квадратов корней будет равна 64 * \frac{9}{16} - 40 * \frac{3}{4} + 2 = 36 - 30 + 2 = 8. Подходит первый вариант.

ответ: при m = 0.
0,0(0 оценок)
Ответ:
Нікіта1111
Нікіта1111
26.10.2021 19:36
Для начала найдём, при каких значениях m корни вообще есть. Для этого D≥0.
D = b^2-4ac=(2(4m-1))^2-4(4m+1)=4(16m^2-8m+1)- \\ -16m-4=64m^2-32m+4-16m-4=64m^2-48m
64m^2-48m \geq 0 \\ 16m(4m-3) \geq 0 \\ m(4m-3) \geq 0 \\ m(4m-3)=0 \\ m=0; 0.75
Решая методом интервалов, получаем: m\in(-\infty; 0]\cup[0.75; +\infty). Это наша ОДЗ.

По теореме Виета
\left \{ {{x_{1}+x_{2}=-2(4m-1)} \atop {x_{1}x_{2}=4m+1}} \right.
Попробуем подогнать сумму квадратов корней под теорему Виета:
x_{1}^{2}+x_{2}^{2}=x_{1}^{2}+2x_{1}x_{2}+x_{2}^{2}-2x_{1}x_{2}=(x_{1}+x_{2})^2-2x_{1}x_{2}
Подставляем:
(-2(4m-1))^2-2(4m+1)=64m^2-32m+4-8m-2= \\ =64m^2-40m+2
Это парабола, ветви направлены вверх, значит, её точка минимума находится в её вершине. Если она принадлежит ОДЗ, то это и будет ответом, если нет - то либо 0, либо 0.75 (концы отрезков ОДЗ).
x_{0}= \frac{-b}{2a} = \frac{40}{128} = \frac{10}{32}
0\ \textless \ \frac{10}{32} \ \textless \ \frac{3}{4} ( \frac{24}{32} ) - не подходит. Проверяем концы отрезков:
При m = 0 сумма квадратов корней будет равна 2.
При m = 0.75 сумма квадратов корней будет равна 64 * \frac{9}{16} - 40 * \frac{3}{4} + 2 = 36 - 30 + 2 = 8. Подходит первый вариант.

ответ: при m = 0.
0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота