Нужно вспомнить теорему Виета. Согласно теореме Виета: х1+х2=а х1*х2=свободный член, где х1 и х2 - корни уравнения квадратичного х1^2+x2^2= а2-2(а+7) По условию эта сумма квадратов равна 10, откуда получаем квадратичное уравнение а2-2а-14=10, корнями которого являются числа 6 и -4. Нашли так. Вернемся к теореме Виета: х1+х2=2 х1*х2=-24.. Вышло два корня:6, -4. При решении квадратичного уравнения нужно помнить, что дискриминант должен быть положительным либо равным 0. а2-4(а+7) больше либо равно 0. При а = 6 дискриминант исходного уравнения отрицательный: х2-6х+13=0 D=36-52=-16, т.е. при а=6 - дискриминант отрицательный и корней уравнение не имеет При а=-4: х2+4х+3=0 D=16=4*3=4-положительный, т.е.при а = -4 положительный. Т.Е. делаем вывод, что нам подходит а=-4
(х + 35) - скорость автомобилиста
2 ч 48 мин = 2,8 час
60 / х - 60 / (х + 35) = 2,8
60 * (х + 35) - 60 * х = 2,8 *(х + 35) * х
60х + 2100 - 60х = 2,8х^2 +98x
2.8x^2 +98x - 2100 = 0
x^2 + 35x - 750 = 0 Найдем дискриминант D Квадратного уравнения
D = 35^2 - 4 * 1 * (- 750) = 1225 + 3000 = 4225 ; sqrt 4225 = 65
Найдем корни уравнения : 1 - ый = (- 35 + 65) / 2 * 1 = 30/2 = 15
2 - ой = (- 35 - 65) / 2 = - 100 / 2 = - 50 . Скорость не может быть меньше 0 , поэтому подходит 1 - ый корень , Скорость велосипедиста равна 15 км/ч
Согласно теореме Виета: х1+х2=а
х1*х2=свободный член, где х1 и х2 - корни уравнения квадратичного
х1^2+x2^2= а2-2(а+7)
По условию эта сумма квадратов равна 10, откуда получаем квадратичное уравнение а2-2а-14=10, корнями которого являются числа 6 и -4.
Нашли так. Вернемся к теореме Виета:
х1+х2=2
х1*х2=-24.. Вышло два корня:6, -4.
При решении квадратичного уравнения нужно помнить, что дискриминант должен быть положительным либо равным 0.
а2-4(а+7) больше либо равно 0.
При а = 6 дискриминант исходного уравнения отрицательный:
х2-6х+13=0
D=36-52=-16, т.е. при а=6 - дискриминант отрицательный и корней уравнение не имеет
При а=-4:
х2+4х+3=0
D=16=4*3=4-положительный, т.е.при а = -4 положительный.
Т.Е. делаем вывод, что нам подходит а=-4