2x²-4х+b=0 Это решается по дискриминанту вот формула D = b² - 4ac где а - это то число где x² где b - это то число где x где c - это то число где нет x Подставляем значения под формулу D = 4² - 4 * 2 * b = 16 - 8b = 8b дальше находим x1 и x2 по формуле х1= -b + квадратный корень из дискриминанта делим на 2а х2= -b - квадратный корень из дискриминанта делим на 2а Так же : если дискриминант отрицательный то корней нет если дискриминант равен нулю то корень только один если дискриминант больше нуля то уравнение имеет два корня
Пусть х км/ч - скорость велосипедиста из В в А, тогда (х - 3) км/ч - его скорость из А в В. Время, затраченное на путь туда и обратно, одинаковое. Уравнение:
Это решается по дискриминанту
вот формула D = b² - 4ac
где а - это то число где x²
где b - это то число где x
где c - это то число где нет x
Подставляем значения под формулу
D = 4² - 4 * 2 * b = 16 - 8b = 8b
дальше находим x1 и x2
по формуле
х1= -b + квадратный корень из дискриминанта
делим на 2а
х2= -b - квадратный корень из дискриминанта
делим на 2а
Так же :
если дискриминант отрицательный то корней нет
если дискриминант равен нулю то корень только один
если дискриминант больше нуля то уравнение имеет два корня
Пусть х км/ч - скорость велосипедиста из В в А, тогда (х - 3) км/ч - его скорость из А в В. Время, затраченное на путь туда и обратно, одинаковое. Уравнение:
418/(х-3) = 418/х + 3 (время остановки)
418/(х-3) - 418/х = 3
418 · х - 418 · (х - 3) = 3 · х · (х - 3)
418х - 418х + 1254 = 3х² - 9х
3х² - 9х - 1254 = 0
Сократим обе части уравнения на 3
х² - 3х - 418 = 0
D = b² - 4ac = (-3)² - 4 · 1 · (-418) = 9 + 1672 = 1681
√D = √1681 = 41
х₁ = (3-41)/(2·1) = (-38)/2 = -19 (не подходит, так как < 0)
х₂ = (3+41)/(2·1) = 44/2 = 22
ответ: 22 км/ч - скорость велосипедиста на пути из В в А.
Проверка:
418 : (22 - 3) = 418 : 19 = 22 ч - время движения из А в В
418 : 22 = 19 ч (+остановка 3 ч) = 22 ч - время, затраченное на обратный путь