В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Audana00
Audana00
30.04.2022 16:31 •  Алгебра

Решите на листочке и отправьте фотографию

Показать ответ
Ответ:
rabadanovaasya
rabadanovaasya
14.03.2023 23:00

8<x<20 км.

Объяснение:

Пусть x км проплыли туристы по течению реки, тогда против течения они проплыли (20−x) км.

7−1 = 6 км/ч — скорость лодки против течения реки;

7+1 = 8 км/ч — скорость лодки по течению реки.

Чтобы найти время, надо расстояние поделить на скорость, поэтому:

20−x6 ч. — время, затраченное туристами на путь против течения реки;

а x8 ч. — время, затраченное туристами на путь по течению реки.

Зная, что в пути туристы были менее трёх часов, составим неравенство:

20−x6+x8<3.

Чтобы избавиться от дроби, умножим обе части неравенства на 48.

(20−x6+x8)⋅48<3⋅48;

20−x6⋅48+x8⋅48<144;

8⋅(20−x)+6⋅x<144;

160−8x+6x<144;

−2x<−16

x>8.

Правильный ответ: 8<x<20 км.

0,0(0 оценок)
Ответ:
voronkovid
voronkovid
20.05.2023 01:58

Пусть \varepsilon - канонический базис в \mathbb{R}^{3}.

Тогда матрицу перехода T_{e \rightarrow e'} можно найти следующим образом:

T_{e \rightarrow e'} = T_{e \rightarrow \varepsilon} \cdot T_{\varepsilon \rightarrow e'} = T_{\varepsilon \rightarrow e}^{-1} \cdot T_{\varepsilon \rightarrow e'}

Если записать блочную матрицу \left(\begin{array}{c|c}T_{\varepsilon \rightarrow e}&T_{\varepsilon \rightarrow e'}\end{array}\right) и привести путем элементарных преобразований к виду \left(\begin{array}{c|c}E&X\end{array}\right), то X = T_{\varepsilon \rightarrow e}^{-1} \cdot T_{\varepsilon \rightarrow e'}

Матрицу T_{\varepsilon \rightarrow e} легко получить: достаточно записать в столбцы координаты векторов базиса e. Аналогично с матрицей T_{\varepsilon \rightarrow e'}.

В итоге необходимо получить вид \left(\begin{array}{c|c}E&X\end{array}\right) следующей матрицы:

\left(\begin{array}{ccc|ccc}2&-1&1&5&7&1\\2&2&-1&5&8&1\\3&-3&2&-1&9&2\end{array}\right)

Вычтем первую строку из второй и третьей:

\left(\begin{array}{ccc|ccc}2&-1&1&5&7&1\\0&3&-2&0&1&0\\1&-2&1&-6&2&1\end{array}\right)

Вычтем из первой строки 2 третьих и поменяем их местами:

\left(\begin{array}{ccc|ccc}1&-2&1&-6&2&1\\0&3&-2&0&1&0\\0&3&-1&17&3&-1\end{array}\right)

Вычтем из третьей строки вторую:

\left(\begin{array}{ccc|ccc}1&-2&1&-6&2&1\\0&3&-2&0&1&0\\0&0&1&17&2&-1\end{array}\right)

Прибавим ко второй строке 2 третьих и вычтем из первой третью:

\left(\begin{array}{ccc|ccc}1&-2&0&-23&0&2\\0&3&0&34&5&-2\\0&0&1&17&2&-1\end{array}\right)

Делим вторую строку на 3:

\left(\begin{array}{ccc|ccc}1&-2&0&-23&0&2\\0&1&0&\frac{34}{3} &\frac{5}{3}&{-\frac{2}{3}}\\0&0&1&17&2&-1\end{array}\right)

Прибавляем в первой строке 2 вторых:

\left(\begin{array}{ccc|ccc}1&0&0&{-\frac{1}{3}}&\frac{10}{3}&\frac{2}{3}\\0&1&0&\frac{34}{3} &\frac{5}{3}&{-\frac{2}{3}}\\0&0&1&17&2&-1\end{array}\right)

\frac{1}{3}\left(\begin{array}{ccc}-1&10&2\\34&5&-2\\51&6&-3\end{array}\right).

0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота