нам для решения нужны два свойства. логарифм числа а по основанию а равен единице, логарифм числа а в степени к по любому основанию равен к умножить на логарифм числа а по любому основанию. Как мы знаем если домножить число на единицу, оно не изменится, тогда
домножим правую часть первого уравнения на логарифм числа 6 по основанию 6, а второе уравнение на логарифм числа 18 по основанию 18, тогда
. уберем в 1-ом уравнении двойку в степень подлогарифмического, получим логарифм числа 36 по основанию 6. Теперь при равенстве логарифмов по одному основанию левых и правых частей, перейдем к равенству, подлогарифмических левых и правых частей, но теперь нужно учесть, что значения переменной х и у должны удовлетвореть ОДЗ: а именно, подлогарифмические выражение должны быть больше нуля, т.е. 3x-y>0 6x+y>0.
Проверим корни на принадлежность ОДХ
3*6-(-18) больше нуля.
6*6-18 так же больше нуля, значит эта пара чисел и есть решение системы.
2)
домножим 4 на логарифм 3 по основанию 3, и отправим 4 в степень, тогда
. Проверим ОДЗ
х+у должно быть болье нуля и это верно. значит пара чисел 83 минус 2 - решение
3) Тут нужно вспомнить еще одно свойство, что сумма логарифмов по одному основанию равна логарифму произведения по этому основанию, тогда
Т.к. по ОДЗ и икс и игрик должны быть больше нуля, то первая пара нас не устраивает, а значит ответ пара чисел 1/2 и 8
4)
, икс и игрик должны быть положительны, поэтому только вторая пара 100 и 10 нас устраивает. (если что lg это десятичный логарифм, т.е. логарифм по основанию 10)
Пусть d и a - решения этого уравнения. Тогда их можно считать взаимно простыми, т.к. иначе можно разделить обе части на квадрат их наибольшего общего делителя. Дальше. Мы видим, что правая часть обязательно делится на 11.Значит а² обязано делиться на 11, т.к.3 на 11 не делится. Так как 11 - простое число, то значит а делится на 11. Но значит вся правая часть делится на 11². Но значит и левая часть обязана делится на 11², а это значит что d² делится на 11. Т.е. и d делится на 11. Т.е. получается что а и d не взаимно просты. Это противоречие.
Объяснение:
нам для решения нужны два свойства. логарифм числа а по основанию а равен единице, логарифм числа а в степени к по любому основанию равен к умножить на логарифм числа а по любому основанию. Как мы знаем если домножить число на единицу, оно не изменится, тогда
домножим правую часть первого уравнения на логарифм числа 6 по основанию 6, а второе уравнение на логарифм числа 18 по основанию 18, тогда
. уберем в 1-ом уравнении двойку в степень подлогарифмического, получим логарифм числа 36 по основанию 6. Теперь при равенстве логарифмов по одному основанию левых и правых частей, перейдем к равенству, подлогарифмических левых и правых частей, но теперь нужно учесть, что значения переменной х и у должны удовлетвореть ОДЗ: а именно, подлогарифмические выражение должны быть больше нуля, т.е. 3x-y>0 6x+y>0.
Проверим корни на принадлежность ОДХ
3*6-(-18) больше нуля.
6*6-18 так же больше нуля, значит эта пара чисел и есть решение системы.
2)
домножим 4 на логарифм 3 по основанию 3, и отправим 4 в степень, тогда
. Проверим ОДЗ
х+у должно быть болье нуля и это верно. значит пара чисел 83 минус 2 - решение
3) Тут нужно вспомнить еще одно свойство, что сумма логарифмов по одному основанию равна логарифму произведения по этому основанию, тогда
Т.к. по ОДЗ и икс и игрик должны быть больше нуля, то первая пара нас не устраивает, а значит ответ пара чисел 1/2 и 8
4)
, икс и игрик должны быть положительны, поэтому только вторая пара 100 и 10 нас устраивает. (если что lg это десятичный логарифм, т.е. логарифм по основанию 10)
Дальше. Мы видим, что правая часть обязательно делится на 11.Значит а² обязано делиться на 11, т.к.3 на 11 не делится. Так как 11 - простое число, то значит а делится на 11. Но значит вся правая часть делится на 11². Но значит и левая часть обязана делится на 11², а это значит что d² делится на 11. Т.е. и d делится на 11. Т.е. получается что а и d не взаимно просты. Это противоречие.