дробь- это действие деления, в которой числитель делимое. а знаменатель делитель, мы знаем, что делить на ноль нельзя, значит знаменатель любой дроби содержащий переменную не должен быть равен нулю.
Поэтому чтобы найти допустимые значения дроби, надо знаменатель этой дроби приравнять к нулю и решить получившееся уравнение и допустившими значениями будет любое число кроме корней этого уравнения.
В твоем случае х=0, знчит х-любое число, кроме 0.
ПРИМЕР:
5/7-х, значит 7-х=0, решив уравнение получаем, что х=7, значит допустимые значения для этой дроби х-любое число, кроме 7.
Вспоминаем формулу сокращенного умножения:
(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3
Получаем:
n^3 - 3n^2m + 3nm^2 - m^3
2) (-2+k)^3 = (k-2)^3
Вспоминаем формулу сокращенного умножения:
(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3
Получаем:
k^3 - 3k^2 * 2 + 3k * 2^2 - 2^3 = k^3 - 6k^2 + 12k - 8
3) (-x-y)^3 = -(x+y)^3
Вспоминаем формулу сокращенного умножения:
(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3
Получаем:
(-x-y)^3 = -((x+y)^3) = -(x^3 + 3x^2y + 3xy^2 + y^3) =
= -x^3 - 3x^2y - 3xy^2 - y^3
4) (-0.5+p)^3 = (p-0.5)^3
Вспоминаем формулу сокращенного умножения:
(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3
Получаем:
p^3 - 0,5p^2 + 0,25p - 0,125
дробь- это действие деления, в которой числитель делимое. а знаменатель делитель, мы знаем, что делить на ноль нельзя, значит знаменатель любой дроби содержащий переменную не должен быть равен нулю.
Поэтому чтобы найти допустимые значения дроби, надо знаменатель этой дроби приравнять к нулю и решить получившееся уравнение и допустившими значениями будет любое число кроме корней этого уравнения.
В твоем случае х=0, знчит х-любое число, кроме 0.
ПРИМЕР:
5/7-х, значит 7-х=0, решив уравнение получаем, что х=7, значит допустимые значения для этой дроби х-любое число, кроме 7.