В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
fgf14
fgf14
16.07.2020 06:08 •  Алгебра

Решите неравенство f'(x)≤0: производную нахожу, но дальше решение даётся без уверенности в правильности. подзабыл тему.

Показать ответ
Ответ:
sksjdjdjxk
sksjdjdjxk
04.10.2020 00:04
1)\quad f(x)= \frac{1}{x} -2x-1\; ,\; \; x\ne 0\\\\f'(x)=-\frac{1}{x^2}-2\\\\f'(x) \leq 0\quad \Rightarrow \quad -\frac{1}{x^2}-2 \leq 0\\\\\frac{1}{x^2}+2 \geq 0\\\\\frac{1+2x^2}{x^2} \geq 0\; ,\; x\ne 0\\\\Tak\; kak\; \; (1+2x^2) \geq 1\; \; i\; \; x^2\ \textgreater \ 0,\; \; to\; \; \frac{1+2x^2}{x^2 } \geq 0\; \; pri\; \\\\x\in (-\infty ,0)\cup (0,+\infty )

2)\quad f(x)=\frac{1}{x^2}+54x+3\; ,\; \; \; x\ne 0\\\\f'(x)=-\frac{1\cdot 2x}{x^4}+54=-\frac{2}{x^3}+54\; ,\; \; x\ne 0\\\\f'(x) \leq 0\quad \Rightarrow \; \; \; - \frac{2}{x^3} +54 \leq 0\\\\\frac{54x^3-2}{x^3} \leq 0 \; ,\; \; \frac{(\sqrt[3]{54}x-\sqrt[3]2)(\sqrt[3]{54^2}x^2+\sqrt[3]{108}x+8)}{x^3} \leq 0\; ,\sqrt[3]{54}=3\sqrt[3]2\\\\\sqrt[3]{54^2}x^2+\sqrt[3]{108}x+8\ \textgreater \ 0\; ,\; t.k.\; \; D\ \textless \ 0\; \; \; \Rightarrow \\\\ \frac{3\sqrt[3]2x-\sqrt[3]2}{x^3} \leq 0\; ,\; \; \; \frac{\sqrt[3]2(3x-1)}{x^3 }\leq 0

Znaki\; drobi:\; \; \; +++(0)---[\, \frac{1}{3}\, ]+++\\\\x\in (0,\frac{1}{3}\, ]
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота