в таблице простых чисел, то есть таких, которые делятся только на 1 и на себя, числа 7, 11 и 13 расположены рядом (см. таблицу простых чисел на стр. 363). их произведение равно:
7 ∙ 11 ∙ 13=1001 = 1000 + 1.
заметим пока, что 1000 + 1 делится и на 7, и на 11, и на 13. далее, если любое трехзначное число умножить на 1001, то произведение запишется такими же цифрами, как и множимое, только повторенными два раза.
пусть
— какое-либо трехзначное число (а, ь и с — цифры этого числа). умножим его на 1001:
следовательно, все числа вида аbсаbс делятся на 7, на 11 и на 13. в частности, делится на 7, 11 и 13 число 999 999, или, иначе, 1000 000—1.
указанные закономерности позволяют свести решение вопроса о делимости многозначного числа на 7 или на 11,
или на 13 к делимости на них некоторого другого числа — не более чем трехзначного.
требуется, положим, определить, делится ли число 42 623 295 на 7, 11 и 13. разобьем данное число справа налево на грани по 3 цифры. крайняя левая грань может и не иметь трех цифр. представим теперь данное число в гаком виде:
42 623 295 = 295 + 628 ∙ 1000 + 42 ∙ 1 000 000,
или (аналогично тому, как это мы делали при рассмотрении признака делимости на 11):
число в квадратной скобке обязательно делится и на 7, и на 11, и на 13. значит, делимость испытуемого числа на
7, 11 и 13 полностью определяется делимостью числа, заключенного в первой круглой скобке.
рассматривая каждую грань испытуемого числа как самостоятельное число, можно высказать следующий объединенный признак делимости сразу на три числа, 7, 11 и 13:
вели разность сумм граней данного числа, взятых через одну, делится на 7 или на 11, или на 13, то и данное число делится соответственно на 7 или на 11, или на 13.
вернемся к числу 42 623 295. определим, на какое из чисел 7, 11 или 13 делится разность сумм граней данного числа:
(295 + 42)—623 = —286.
число 286 делится на 11 и на 13, а на 7 оно не делится. следовательно, число 42 623 295 делится на 11 и на 13, но на 7 не делится.
очевидно, что делимость на 7, 11 и 13 четырех-, пяти — и шестизначных чисел, то есть чисел, разбивающихся всего лишь на 2 грани (практически более частый случай), определяется делимостью на 7, 11 и 13 разности граней данного числа. так, например, легко установить, что 29 575 делится на 7 и на 13, но не делится на 11. действительно, разность граней равна
575—29 = 546,
а число 546 делится на 7 и на 13 и не делится на 11.
. устанавливая объединенный признак делимости на 7, 11 и 13, мы оперировали числом, разбивавшимся на 3 грани. проведите обоснование этого признака на примере числа, разбивающегося на 4 грани по 3 цифры справа налево.
2x-3=5-2x
2x+2x=5+3
4x=8
x=8/4
x=2
2x+1=3-x
2x+x=3-1
3x=2
x=2/3
x-4=2-3x
x+3x=2+4
4x=6
x=6/4
x=1.5
2x+5=5-x
2x+x=5-5
3x=0
x=0
x-4=4-x
x+x=4+4
2x=8
x=8/4
x=2
2x-8=11-3x
2x+3x=11+8
5x=19
x=19/5
x=3.8
17x+11=6+12x
17x-12x=6-11
5x=-5
x=-5/5
x=-1
11x-4=4-x
11x+x=4+4
12x=8
x=8/12
x=2/3
x-8=11-12x
x+12x=11+8
13x=19
x=19/13
2x-4=5-x
2x+x=5+4
3x=9
x=9/3
x=3
x/2-3x-2/4=3
0.5x-3x=3+0.5
-2.5x=3.5
x=-3.5/2.5
x=-1.4
x-1/3-x/4=13x/4=1+1/3
3/4x=4/3
x=4/3*4/3
x=16/9
x/2+3x-2/5=4
0.5x+3x=4+0.4
3.5x=4.4
x=4.4/3.5
x=44/35
x-1/4+2x+1/3=5
3x=5+1/4-1/3
3x=(60+3-4)/12
3x=59/12
x=59/36
2x+2/5-x-4/3=x-2/4
x-x=-2/4+4/3-2/5
0=(-30+80-24)60
0≠26/60 уравнение не имеет решений
x/2-x/3=3x+11/4
х/6-3х=2,75
-17/6х=2,75
х=-2,75*6/17
х=-16,5/17
x/3+x+2/5=x-4/2
х/3=-2-0,4
х/3=-2,4
х=-7,2
2x+3/5=x/4-2x+3/6
4х-0,25х=0,5-0,6
3,75х=-0,1
х=-10/375
х=-2/75
ответ:
объяснение:
в таблице простых чисел, то есть таких, которые делятся только на 1 и на себя, числа 7, 11 и 13 расположены рядом (см. таблицу простых чисел на стр. 363). их произведение равно:
7 ∙ 11 ∙ 13=1001 = 1000 + 1.
заметим пока, что 1000 + 1 делится и на 7, и на 11, и на 13. далее, если любое трехзначное число умножить на 1001, то произведение запишется такими же цифрами, как и множимое, только повторенными два раза.
пусть
— какое-либо трехзначное число (а, ь и с — цифры этого числа). умножим его на 1001:
следовательно, все числа вида аbсаbс делятся на 7, на 11 и на 13. в частности, делится на 7, 11 и 13 число 999 999, или, иначе, 1000 000—1.
указанные закономерности позволяют свести решение вопроса о делимости многозначного числа на 7 или на 11,
или на 13 к делимости на них некоторого другого числа — не более чем трехзначного.
требуется, положим, определить, делится ли число 42 623 295 на 7, 11 и 13. разобьем данное число справа налево на грани по 3 цифры. крайняя левая грань может и не иметь трех цифр. представим теперь данное число в гаком виде:
42 623 295 = 295 + 628 ∙ 1000 + 42 ∙ 1 000 000,
или (аналогично тому, как это мы делали при рассмотрении признака делимости на 11):
42 623 295 = 295 + 623 (1000 + 1 —1) + 42(1 — 1 + 1) = (295 — 623 + 42) + [623 (1000 + 1) + 42 (1000 000 —
число в квадратной скобке обязательно делится и на 7, и на 11, и на 13. значит, делимость испытуемого числа на
7, 11 и 13 полностью определяется делимостью числа, заключенного в первой круглой скобке.
рассматривая каждую грань испытуемого числа как самостоятельное число, можно высказать следующий объединенный признак делимости сразу на три числа, 7, 11 и 13:
вели разность сумм граней данного числа, взятых через одну, делится на 7 или на 11, или на 13, то и данное число делится соответственно на 7 или на 11, или на 13.
вернемся к числу 42 623 295. определим, на какое из чисел 7, 11 или 13 делится разность сумм граней данного числа:
(295 + 42)—623 = —286.
число 286 делится на 11 и на 13, а на 7 оно не делится. следовательно, число 42 623 295 делится на 11 и на 13, но на 7 не делится.
очевидно, что делимость на 7, 11 и 13 четырех-, пяти — и шестизначных чисел, то есть чисел, разбивающихся всего лишь на 2 грани (практически более частый случай), определяется делимостью на 7, 11 и 13 разности граней данного числа. так, например, легко установить, что 29 575 делится на 7 и на 13, но не делится на 11. действительно, разность граней равна
575—29 = 546,
а число 546 делится на 7 и на 13 и не делится на 11.
. устанавливая объединенный признак делимости на 7, 11 и 13, мы оперировали числом, разбивавшимся на 3 грани. проведите обоснование этого признака на примере числа, разбивающегося на 4 грани по 3 цифры справа налево.