Вначала рассмотрим функция у=х^2+2x+1 и если у=о, то х^2+2x+1=0 найдём нули этого ур-ия, по теореме Виета он будет один х=-1 чертим прямую(эта прямая является осью абсцисс, т.к. мы будем сравнивать с нулём) графиком является парабола, отмечаем точку -1 на прямой 1)так как графиком парабола, и ветви её направлены вверх, а нам нужно меньше нуля, то решений здесь не будет 2) здесь от минус бесконеч-ти до -1 и от -1 до плюс бес-ти(т.к. парабола вся в верху) 3)здесь {-1} 4)здесь от минус бесконеч-ти до плюс бес-ти(т.к. парабола вся в верху) и знак >=
Шары из одинаковой стали, т.е. плотность у них одинаковая. масса есть плотность умноженная на объем. для ответа на вопрос надо массу большого шара поделить на массу маленького. плотности одинаковые значит сократятся. значит искомое отношение заменится на отношение объемов. радиус большого шара в 2 раза больше чем радиус маленького, значит объем большого шара в 8 раз больше объема маленького шара. ответ 8.
это можно доказать подставив в формулы объема R для маленького шара и 2R для большого и поделить одно на другое
найдём нули этого ур-ия, по теореме Виета он будет один х=-1
чертим прямую(эта прямая является осью абсцисс, т.к. мы будем сравнивать с нулём)
графиком является парабола, отмечаем точку -1 на прямой
1)так как графиком парабола, и ветви её направлены вверх, а нам нужно меньше нуля, то решений здесь не будет
2) здесь от минус бесконеч-ти до -1 и от -1 до плюс бес-ти(т.к. парабола вся в верху)
3)здесь {-1}
4)здесь от минус бесконеч-ти до плюс бес-ти(т.к. парабола вся в верху)
и знак >=
радиус большого шара в 2 раза больше чем радиус маленького, значит объем большого шара в 8 раз больше объема маленького шара. ответ 8.
это можно доказать подставив в формулы объема R для маленького шара и 2R для большого и поделить одно на другое