В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
029292299292
029292299292
13.05.2020 07:54 •  Алгебра

Решите неравенство log2x(x+3)<2 . В ответ запишите наименьшее целое решение неравенства

Показать ответ
Ответ:
булати
булати
25.04.2023 19:18

8/15, 2/9

Объяснение:

Пусть заданная дробь - x/(x+7). Если числитель и знаменатель уменьшить на 6 (x-6; x+7-6=x+1), то полученная дробь будет в 2,4 раза меньше исходной. Составим и решим уравнение:

2,4*(x-6)/(x+1)=x/(x+7)

x+1≠0; x+7≠0

x≠-1; x≠-7

2,4*(x-6)(x+7)=x(x+1)

2,4(x²+7x-6x-42)=x²+x

2,4x²+2,4x-100,8-x²-x=0

1,4x²+1,4x-100,8=0/:1,4

x²+x-72=0

D=1²-4*1*(-72)=289=17²

x₁=(-1+17)/2*1=8

x₂=(-1-17)/2*1=-9

Значит, исходная дробь будет 8/(8+7)=8/15; -9/(-9+7)=3,5 (не подходит по условию, должна быть правильная дробь).

Вторая дробь (8-6)/(8+1)=2/9.

0,0(0 оценок)
Ответ:
veraorfey
veraorfey
19.10.2020 20:02

Рассмотрим ряд из произвольных 2020 натуральных чисел . Каждое из них при делении на 2021 может давать остатки от 0 до 2020 .

Возможны три случая :

1) Среди произвольных 2020 натуральных чисел найдётся по крайней мере одно число, дающее остаток 0 при делении на 2021. То есть число кратное 2021. Тогда выбираем это число в качестве x = 2021k и выражение x(y - z) = 2021k(y - z) кратно 2021.

2)Среди произвольных 2020 натуральных чисел найдутся по крайней мере два дающие одинаковые остатки при делении на 2021 .

Тогда выбираем их в качестве y и z . К примеру :

y = 2021k +m, z = 2021n + m и выражение

x(y -z) = x(2021k + m - 2021n - m) = 2021x(k-n) кратно 2021 .

3)Среди произвольных 2020 натуральных чисел нет ни чисел, дающих при делении на 2021 остаток 0, ни чисел, дающих одинаковые остатки.

Но тогда в ряду из 2020 чисел представлены все возможные остатки от 1 до 2020 . Заметим что 2021 = 43 * 47 . Из них в качестве х выбираем, к примеру, число, дающее при делении на 2021 остаток 43, в качестве y число , дающее остаток 48, а в качестве z число ,  дающее

остаток 41 . Тогда выражение

x(y - z) = (2021k + 43)(2021m + 48 - 2021n - 41) =

= (2021k + 43)(2021m - 2021n + 47) =(2021k + 43)[2021(m - n) + 47] =

= 2021²k(m - n) + 47 * 2021k + 43 *2021(m - n) + 43 * 47 =

= 2021[2021k(m - n) + 47k + 43(m - n) + 1] вновь кратно 2021 .

O. E. не ошиблась

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота