Пусть скорость второго лыжника будет х км/ч, тогда скорость первого лыжника, будет х-2 км/ч (т.к. его скорость была на 2 км/ч меньше, чем у второго). Время, за которое первый лыжник преодолел расстояние в 40 км будет: 40/(х-2)=t Второй лыжник потратил столько же времени, сколько и первый, только преодолел 48 км, его время будет: 48/х=t
Т.к. время первого и второго лыжников равны, получаем уравнение: t=40/(х-2)=48/х
Решаем это уравнение относительно х: 40 = 48 х-2 х
40*х=48*(х-2) 40х=48х-48*2 40х=48х-96 48х-40х=96 8х=96 х=96:8 х=12 км/ч - скорость второго лыжника.
Скорость первого лыжника на 2 км/ч меньше, чем у второго, т.е.: 12-2=10 км/ч - скорость первого лыжника.
Где парабола = ax^2+bx+c
-x^2+2x+2
-2/-2=1 - точка максимума
y=x^5-3x^3+4x
y=5x^4-9x^2+4
5x^4-9x^2+4=0
Находим корни подбором среди делителей свободного члена
+-1,+-2,+-4
5-9+4=0
x = 1
(5x^4-9x^2+4)/(x-1)
5x^3+5x^2-4x-4
Когда сумма нечетных степеней, совпадает с четным, -1 корень решения
5+(-4)=1
5+(-4)=1
(x+1) - корень решения
5x^3+5x^2-4x-4:(x+1)
(5x^2-4)(x+1)(x-1)
D=0-4*5-4=80
x_1,x_2= +-sqrt(80)/10
(x+sqrt(80)/5)(x-sqrt(80)/10)(x+1)(x-1)=0
Найдем экстремумы (методом интервалов получаем) =
max = -1,2/sqrt(5) ; min = 1,-2/sqrt(5)
Наибольшее значение = 2 При х = 1
Наименьшее значение = -2 При х = -1
Время, за которое первый лыжник преодолел расстояние в 40 км будет:
40/(х-2)=t
Второй лыжник потратил столько же времени, сколько и первый, только преодолел 48 км, его время будет:
48/х=t
Т.к. время первого и второго лыжников равны, получаем уравнение:
t=40/(х-2)=48/х
Решаем это уравнение относительно х:
40 = 48
х-2 х
40*х=48*(х-2)
40х=48х-48*2
40х=48х-96
48х-40х=96
8х=96
х=96:8
х=12 км/ч - скорость второго лыжника.
Скорость первого лыжника на 2 км/ч меньше, чем у второго, т.е.:
12-2=10 км/ч - скорость первого лыжника.