[подчёркнутое число обозначает, что в его записи 100 цифр] Запишем число 333...333 в виде произведения: 333333 = 3* 111111 Множители взаимно простые, значит искомое число Х должно делиться на оба числа: 3 и 111...111 1) Чтоб число Х делилось на 3, количество единичек в нём должно быть кратно 3. 2) Чтоб число Х делилось на 111...111, число Х должно содержать целое число групп по сто единичек: одну, две, три, четыре и так далее. Наименьшее из чисел, которое удовлетворяет этим двум условиям - это 111111...111111 (300 единичек)
√(22/3) √ (17/2) √ (8/3) √(19/5)
например вот так
возведем их в квадрат
(22/3) (17/2) (8/3) (19/5)
приводим к наименьшему общему знаменателю (30)
220/30 255/30 80/30 57/30
и располагаем в порядке возрастания
57/30 80/30 220/30 255/30 ⇒255/30 =17/2 ⇒√(17/2 ) -наибольшее.
или так...
возведем их в квадрат и выделим целую часть
(22/3)=7+1/3 (17/2)=8+1/2 (8/3)=2+2/3 (19/5)=3+4/5 ⇒
(17/2)=8+1/2 - наибольшее среди (22/3), (17/2), (8/3), (19/5),
⇒√ (17/2) - наибольшее среди √(22/3), √ (17/2), √(8/3) , √(19/5).
Запишем число 333...333 в виде произведения:
333333 = 3* 111111
Множители взаимно простые, значит искомое число Х должно делиться на оба числа: 3 и 111...111
1) Чтоб число Х делилось на 3, количество единичек в нём должно быть кратно 3.
2) Чтоб число Х делилось на 111...111, число Х должно содержать целое число групп по сто единичек: одну, две, три, четыре и так далее.
Наименьшее из чисел, которое удовлетворяет этим двум условиям - это 111111...111111 (300 единичек)