Пусть числа х₁, х₂, 12 - геометрическая прогрессия,
тогда 12/х₂ = х₂/х₁ и (х₂)² = 12х₁, значит х₂ =√(12х₁)
По условию, х₁, х₂, 9 - арифметическая прогрессия,
тогда 9-х₂ = х₂-х₁ и 2х₂ = 9+х₁, значит х₂ =(9+х₁)/2
Приравниваем найденные значения для х₂:
(9+х₁)/2 = √(12х₁)
Возводим в квадрат обе части уравнения:
[(9+x₁)/2]² = 12x₁
(9+x₁)²/4 = 12x₁
Обе части уравнения умножаем на 4:
(9+x₁)²=48x₁
81-30x₁+x₁²=0
D=900-4*1*81=900-324=576=24²
(x₁)1 = 27 (не подходит)
(x₁)2=3
Итак, х₁=3. х₃=12 если прогрессия геометрическая и х₃=9, если прогрессия арифметическая, значит, 9-2d=3
2d=6
d=3
x₂=3+d=3+3=6
Получаем, 3,6,12 - геометрическая прогрессия и
3,6,9 - арифметическая прогрессия.
35a 2+7a 2b 2+5b+b 3 =
сгруппируем слагаемые скобками;
= (35a 2+7a 2b 2) + (5b+b 3) =
вынесем за скобки общий множитель первой,
а затем и второй группы;
= 7a 2 • (5+b 2) + b • (5+b 2) =
у нас получилось выражение из двух слагаемых, в каждом
из которых присутствует общий множитель (5+b 2),
который мы вынесем за скобку;
= (7a 2+b) • (5+b 2) .
Значит:
35a 2+7a 2b 2+5b+b 3 = (7a 2+b) (5+b 2) .
Разложим на множители ещё один многочлен :
10b 2a – 15b 2 – 8аb + 12b + 6а – 9 =
сгруппируем слагаемые скобками;
= (10b 2a – 15b 2) – (8аb – 12b) + (6а – 9) =
вынесем за скобки общий множитель первой,
а затем второй и третьей группы;
= 5b 2 • (2a – 3) – 4b • (2а – 3) + 3 • (2а – 3) =
у нас получилось выражение из трех слагаемых, в каждом
из которых присутствует общий множитель (2а – 3),
который мы вынесем за скобку;
= (5b 2 – 4b + 3) • (2a – 3) .
Пусть числа х₁, х₂, 12 - геометрическая прогрессия,
тогда 12/х₂ = х₂/х₁ и (х₂)² = 12х₁, значит х₂ =√(12х₁)
По условию, х₁, х₂, 9 - арифметическая прогрессия,
тогда 9-х₂ = х₂-х₁ и 2х₂ = 9+х₁, значит х₂ =(9+х₁)/2
Приравниваем найденные значения для х₂:
(9+х₁)/2 = √(12х₁)
Возводим в квадрат обе части уравнения:
[(9+x₁)/2]² = 12x₁
(9+x₁)²/4 = 12x₁
Обе части уравнения умножаем на 4:
(9+x₁)²=48x₁
81-30x₁+x₁²=0
D=900-4*1*81=900-324=576=24²
(x₁)1 = 27 (не подходит)
(x₁)2=3
Итак, х₁=3. х₃=12 если прогрессия геометрическая и х₃=9, если прогрессия арифметическая, значит, 9-2d=3
2d=6
d=3
x₂=3+d=3+3=6
Получаем, 3,6,12 - геометрическая прогрессия и
3,6,9 - арифметическая прогрессия.