В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
slavachekunov
slavachekunov
03.04.2020 19:47 •  Алгебра

решите,очень нужно, 1.4x²+12x+9=0
2.9x²+4x-8=0
3.3x²+6x+4=0

4.6x-5x²=0
5.25x²=4
6.4x²-7x-2=0
7.4x²+20x+25=0
8.3x²+2x+1=0
вас

Показать ответ
Ответ:
Няша177777777777
Няша177777777777
07.08.2021 18:03

В решении.

Объяснение:

Объяснение:

Одночленом называется выражение, которое содержит числа, натуральные степени переменных и их произведения, и при этом не содержит никаких других действий с этими числами и переменными.  

Одночлен называется представленным в стандартном виде , если он представлен в виде произведения числового множителя на первом месте и степеней различных переменных. Числовой множитель у одночлена стандартного вида называется коэффициентом одночлена, сумму показателей степени переменных называют степенью одночлена.  

Укажите степень одночлена −9x⁵y⁷.

Степень одночлена: 5+7=12.

0,0(0 оценок)
Ответ:
lera933737
lera933737
29.11.2022 00:21

ответ:5

Объяснение:

Покажем, что Петино множество не может содержать больше, чем 5 элементов. От противного: пусть множество содержит не менее 6 элементов. Упорядочим эти элементы по неубыванию модулей:

 |a1|≤|a2|≤...≤|a6|.

Отметим, что среди элементов a2, a3… a6 не может встретиться 0.

Для любой четвёрки a, b, c, d,, являющейся выборкой из элементов a2, a3… a6, справедливо неравенство

abcd≤a41.

При этом, так как среди элементов a2, a3… a6 существует не более одного, совпадающего с a1 по модулю, мы получаем

 a41<|abcd|.

Выберем четвёрку a, b, c, d, так, чтобы abcd=|abcd|.

 Если среди элементов a2, a3… a6 нет отрицательных, то в качестве a, b, c, d, подойдут любые из этих элементов. Если среди элементов a2, a3… a6 есть ровно 1 отрицательный, то в качестве a, b, c, d, подойдут оставшиеся положительные элементы. Если среди элементов a2, a3… a6 есть ровно 2 или 3 отрицательных, то в качестве a, b, c, d, подойдут 2 отрицательных и 2 положительных элемента. Если же среди элементов a2, a3… a6 существует не менее 4 отрицательных, то в качестве a, b, c, d, подойдут любые 4 отрицательных элемента из a2, a3… a6.

Таким образом, мы нашли такие a, b, c, d,, для которых выполняется равенство abcd=|abcd|.

Но тогда abcd<a41<|abcd|=abcd.

Тем самым мы получили противоречие. Значит, Петино множество состоит не более, чем из 5 целых чисел.

Указанный пример показывает, что Петино множество с 5 элементами существует:

 1, 2, 3, 4, −5.

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота