В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
milashkamilana2005
milashkamilana2005
08.05.2022 12:11 •  Алгебра

Решите подстановки систему линейных уравнений

11х+3у=20

5х-6у=14

Решите подстановки систему уравнений

2х-у=-1

ху=15

В данной системе уравнений и в трёх следующих заданиях решением системы является две пары чисел, ответ записывать следующим образом (2; 7); (4; 5)

Решите подстановки систему уравнений

х-18у=6

ху=4.

Показать ответ
Ответ:
swecut
swecut
05.03.2020 10:34

\boxed{\dfrac{8}{3}} квадратных единиц

Объяснение:

Построим график y = -x^{2} + 4x - 4

Пусть S площадь ограниченная графиком функции  y = -x^{2} + 4x - 4  осями координат. Пусть точка B - пересечение графика y и оси абсцисс, точка A - пересечение графика y и оси ординат.

y(0) = -0^{2} + 4 * 0 - 4 = -4

y = 0

-x^{2} + 4x - 4 = 0|*(-1)

x^{2} - 4x + 4 =0

(x - 2)^{2} = 0 \Longleftrightarrow x - 2 =0

x = 2

Координаты точек A и B:

A(0;-4)

B(2;0)

Пусть точка начало системы координат, тогда точка O имеет координаты O(0;0).

Узнаем уравнение прямой проходящей через точки A и B. Уравнение прямой с угловым коэффициентом в общем виде: y = kx + b.

\displaystyle \left \{ {{A: -4=k * 0 + b} \atop {B:0=2*k + b}} \right.\displaystyle \left \{ {{ b=-4} \atop {0=2k - 4}} \right.\displaystyle \left \{ {{ b=-4} \atop {4=2k |:2}} \right.\displaystyle \left \{ {{ b=-4} \atop {k = 2}} \right.

y = 2x - 4

Пусть S_{1} - площадь между прямой y = 2x - 4 и функцией y = -x^{2} + 4x - 4

Пусть f(x) = y = 2x - 4 и g(x) = y = -x^{2} + 4x - 4.

S = S_{\bigtriangleup AOB} - S_{1}

OA = \sqrt{(x_{A} - x_{O})^{2} + (y_{A} - y_{O})^{2}} = \sqrt{(0 - 0)^{2} + (-4 - 0)^{2}} =\sqrt{16} = 4

OB = \sqrt{(x_{B} - x_{O})^{2} + (y_{B} - y_{O})^{2}} = \sqrt{(2 - 0)^{2} + (0 - 0)^{2}} =\sqrt{4} = 2

По формуле площади прямоугольного треугольника:

S_{\bigtriangleup AOB} = \dfrac{AO * OB}{2} = \dfrac{4 * 2}{2} = 4.

Промежуток интегрирования: [0;2]

Докажем, что f(x) \geq g(x) при x \in [0;2]

2x- 4 \geq -x^{2} + 4x - 4

x^{2} - 2x \geq 0

x(x - 2) \geq 0

x \in (-\infty;0] \cup [2;+\infty) тогда можно сделать вывод, что

g(x) \geq f(x) при x \in [0;2].

По теореме:

S_{1} = \displaystyle \int\limits^2_0 {(g(x) - f(x))} \, dx = \int\limits^2_0 {-x^{2} +4x - 4 - 2x + 4} \, dx = \int\limits^2_0 {2x-x^{2}} \, dx =

= x^{2} - \dfrac{x^{3} }{3} \bigg|_0^2 = (2^{2} - \dfrac{2^{3} }{3}) - 0 = 4 - \dfrac{8}{3} = \dfrac{12 - 8}{3} = \dfrac{4}{3}.

S = S_{\bigtriangleup AOB} - S_{1} = 4 - \dfrac{4}{3} = \dfrac{12 -4}{3} = \dfrac{8}{3} квадратных единиц.


найти площадь фигуры,ограниченной осями координат и параболой
найти площадь фигуры,ограниченной осями координат и параболой
найти площадь фигуры,ограниченной осями координат и параболой
0,0(0 оценок)
Ответ:
RaSyL111
RaSyL111
29.03.2020 22:20

ответ

Объяснение:

1)  3 1/9 : 2 1/3 - 2 5/6=28/9 : 7/3 -2 5/6=28/9*3/7 -2.5/6=4/3-2 5/6=

=8/6-2 5/6=-(2 5/6 -1 2/6)=-1 3/6=-1 1/2 = -1.5;

2)  1 5/7 - 4 3/13 : 1 19/26 = 1 5/7 - 55/13 : 45/26=1 5/7-55/13*26/45 =

=1 5/7-22/9 = 1 5/7 - 2 4/9 = -(2 28/63-1 45/63) = - (1 (28-45)/63)=

=-(63+28-45)/63= -46/63;

3)  10 16/17 : 8 5/11 + 1 2/3 = 186/17 : 93/11 +1 2/3 = 186/17 * 11/93 + 1 2/3 =

=22/17+1 2/3=1 5/17+1 2/3=1 15/51 + 1 34/51 = 2 49/51;

4)  47/48 : 3 13/27 - 13/16= 47/48 : 94/27 - 13/16 = 47/48*27/94 -13/16=

= 27/96-13/16 = 27/96-78/96=-51/96=-17/32.

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота