Давайте я вам объясню. Координаты, имеют вид (x;y), то есть, если дана некая функция, в нашем случае игрек зависит от икса. Нам требуется лишь подставить значение икса в координате, и посмотреть, будет ли координата игрека равна координате игрека данной функции. Сейчас вы поймете: Мы берем точку А (2;-1), и что бы проверить, проходит ли функция через данную точку, мы должны, взять значение икса в данной точке, и подставить данное значение в функцию:
Отсюда следует, что функция проходит через данную точку.
Данную операцию можно проделать и 2 задании, но зачем? Мы уже итак знаем что при х=2, у=-1. А значит, что функция не проходит через точку В.
Мы берем точку А (2;-1), и что бы проверить, проходит ли функция через данную точку, мы должны, взять значение икса в данной точке, и подставить данное значение в функцию:
Отсюда следует, что функция проходит через данную точку.
Данную операцию можно проделать и 2 задании, но зачем? Мы уже итак знаем что при х=2, у=-1.
А значит, что функция не проходит через точку В.
Замена: x/2 = t
4sin2 t - 3(sin2 t + cos2 t) = 2 · sin t · cos t
sin2 t - 3cos2 t - 2sin t · cos t = 0 | : cos2 t ≠0
Действительно, если cos t = 0 (т.е. и cos2 t =0), то sin2 t - 3*0- 2sin t · 0 = 0. Получаем sin2 t =0
Т.е. sin t =0. Но тогда не выполнится основное тригонометрическое тождество: sin2 t + cos2 t = 0+0=0≠1!
tg2 t - 3 - 2 tg t = 0
По т. обр т. Виета подберём корни (чтобы не делать еще одну замену):
tg2 t - 2 tg t - 3 = 0
(tg t + 1) (tg t - 3) = 0
tg t = -1 или tg t = 3
tg x/2 = -1 или tg x/2 = 3
x/2 = arctg (-1) + πk; k€Z
x/2 = arctg (3) + πk; k€Z
x/2 = -π/4 + πk; k€Z
x/2 = arctg (3) + πk; k€Z
x = -π/2 + 2πk; k€Z
x = 2 arctg 3 + 2πk; k€Z
ответ:
x = -π/2 + 2πk; k€Z
x = 2 arctg 3 + 2πk; k€Z