Допустим, мы вынимаем по одной перчатке из левого и правого ящика, пока не получим две белых или две черных. Две красных мы не можем получить, потому что красные только правые. В самом плохом случае мы вынем из левого ящика 2 белых, а из правого 2 красных. Потом из левого 4 черных, а из правого 4 белых. Остались в левом белые, а в правом белые и черные. Достаточно вынуть 1 из правого ящика, левые у нас уже есть и белые, и черные. Всего нужно 2 + 2 + 4 + 4 + 1 = 13 перчаток.
Допустим, мы действуем по-другому. Вынимаем сначала перчатки только из левого ящика. Нам нужно обязательно хотя бы по 1 черную и белую. В самом плохом случае мы вынем все 8 белых и только 9-ую черную. Теперь вынимаем из правого ящика. В самом плохом случае 2 красных и третью белую или черную. Всего понадобилось 9 + 3 + 1 = 13.
Допустим, мы начали с правого ящика. Тогда мы вытащим 2 красных, 9 белых и 1 черную. Из левого достаточно вынуть 1 перчатку. Всего 2 + 9 + 1 + 1 = 13 перчаток.
В общем, при любом мы все равно получаем 13 перчаток.
равним два треугольника. Запишем теорему Пифагора для них, так как углы неизвестны.
Приравниваем правые части:
Подставим эту найденную нами скорость в любое из выражений, составленных по теореме Пифагора:
Определяем углы из треугольников перемещений:
Тогда
Косинусы углов:
Тогда
Или
Синус принимает одно и то же значение при двух разных углах, дополняющих друг друга до .
Тогда
Тогда один из углов
Это следует из треугольника перемещений:
Заметим важный факт: биссектриса угла между векторами начальных скоростей камней будет наклонена под углом к горизонтали.
Обозначим угол между вектором и биссектрисой . Тогда
ответ: , , , .
Задача 14. Из одной точки, расположенной достаточно высоко над поверхностью земли, вылетают две частицы с горизонтальными противоположно направленными скоростями и . Через какое время угол между направлениями скоростей этих частиц станет равным ? На каком расстоянии друг от друга они при этом будут находиться? Сопротивлением воздуха пренебречь.
пока не получим две белых или две черных. Две красных мы не можем получить, потому что красные только правые.
В самом плохом случае мы вынем из левого ящика 2 белых, а из правого 2 красных. Потом из левого 4 черных, а из правого 4 белых.
Остались в левом белые, а в правом белые и черные.
Достаточно вынуть 1 из правого ящика, левые у нас уже есть и белые,
и черные. Всего нужно 2 + 2 + 4 + 4 + 1 = 13 перчаток.
Допустим, мы действуем по-другому. Вынимаем сначала перчатки только из левого ящика. Нам нужно обязательно хотя бы по 1 черную и белую.
В самом плохом случае мы вынем все 8 белых и только 9-ую черную.
Теперь вынимаем из правого ящика. В самом плохом случае 2 красных и третью белую или черную. Всего понадобилось 9 + 3 + 1 = 13.
Допустим, мы начали с правого ящика. Тогда мы вытащим 2 красных,
9 белых и 1 черную. Из левого достаточно вынуть 1 перчатку.
Всего 2 + 9 + 1 + 1 = 13 перчаток.
В общем, при любом мы все равно получаем 13 перчаток.
равним два треугольника. Запишем теорему Пифагора для них, так как углы неизвестны.
Приравниваем правые части:
Подставим эту найденную нами скорость в любое из выражений, составленных по теореме Пифагора:
Определяем углы из треугольников перемещений:
Тогда
Косинусы углов:
Тогда
Или
Синус принимает одно и то же значение при двух разных углах, дополняющих друг друга до .
Тогда
Тогда один из углов
Это следует из треугольника перемещений:
Заметим важный факт: биссектриса угла между векторами начальных скоростей камней будет наклонена под углом к горизонтали.
Обозначим угол между вектором и биссектрисой . Тогда
ответ: , , , .
Задача 14. Из одной точки, расположенной достаточно высоко над поверхностью земли, вылетают две частицы с горизонтальными противоположно направленными скоростями и . Через какое время угол между направлениями скоростей этих частиц станет равным ? На каком расстоянии друг от друга они при этом будут находиться? Сопротивлением воздуха пренебречь.
Решим эту задачу двумя Первый