Квадратное уравнение не имеет корней, если значение дискриминанта D < 0.
Запишем выражение для нахождения дискриминанта заданного уравнения:
D = n^2 - 4 * 2 * 8;
D = n^2 - 64.
Определим, при каких значениях n значение дискриминанта меньше 0, то есть решим неравенство n^2 - 64 < 0.
Разложим левую часть выражения на множители:
(n - 8)(n + 8) < 0.
Методом интервалом находим, что данное неравенство справедливо при n ∈ (-8; 8).
Следовательно, заданное квадратное уравнение не имеет корней при n ∈ (-8; 8).
ответ: при n ∈ (-8; 8).
→ → → → →
АВ + СВ = АВ + ВМ = АМ
→ →
Задание : АМ*АС=?
Знаем, что скалярное произведение векторов - это произведение их длин на косинус угла между ними.
→ → → → → →
АМ * АС = |АМ|*|AC|*CosABM= |AM|*|AC|*Cos150°= ?
|AM| ищем из ΔАМС по т. Пифагора |AM| = √(12 -1)=√13
|AC| = 1 ( против угла 30°)
Сos150° = -Cos30°= -√3/2
→ → → → → →
АМ * АС = |АМ|*|AC|*CosABM= |AM|*|AC|*Cos150°=√13*1*(-√3/2) = -√39/2
Квадратное уравнение не имеет корней, если значение дискриминанта D < 0.
Запишем выражение для нахождения дискриминанта заданного уравнения:
D = n^2 - 4 * 2 * 8;
D = n^2 - 64.
Определим, при каких значениях n значение дискриминанта меньше 0, то есть решим неравенство n^2 - 64 < 0.
Разложим левую часть выражения на множители:
(n - 8)(n + 8) < 0.
Методом интервалом находим, что данное неравенство справедливо при n ∈ (-8; 8).
Следовательно, заданное квадратное уравнение не имеет корней при n ∈ (-8; 8).
ответ: при n ∈ (-8; 8).