В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
Усенька
Усенька
22.01.2021 11:00 •  Алгебра

Решите систему уравнений: x+y=5 x^3+y^3=215

Показать ответ
Ответ:
JULIYAc
JULIYAc
15.10.2020 18:30

\displaystyle\begin{cases}x+y=5\\x^3+y^3=215\end{cases}\to\begin{cases}x+y=5\\(x+y)(x^2-xy+y^2)=215\end{cases}\to\\\to\begin{cases}x+y=5\\(x+y)(x^2+2xy+y^2-3xy)=215\end{cases}\to\\\to\begin{cases}x+y=5\\(x+y)((x+y)^2-3xy)=215\end{cases}\to\begin{cases}x+y=5\\5(25-3xy)=215\end{cases}\to\\\to\begin{cases}x+y=5\\25-3xy=43\end{cases}\to\begin{cases}x+y=5\\3xy=-18\end{cases}\to\begin{cases}x+y=5\to x=5-y\\xy=-6\end{cases}\\(5-y)y=-6\\5y-y^2=-6\\y^2-5y-6=0\\y_{1,2}=\frac{5\pm\sqrt{25+24}}{2}=\frac{5\pm7}{2}

y_1=6\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ y_2=-1\\x_1=5-6=-1\ \ \ x_2=5-(-1)=6\\OTBET:(-1;6);(6;-1)

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота