Основание АD трапеции ABCD лежит в плоскости α .Через точки B и C проведены параллельные прямые , пересекающие плоскость α в точках E и F соответственно. 1) Каково взаимное расположение прямых EF и AB? (Уточняем - в плоскости α лежит только АД, а ВС - не лежит. В противном случае ВЕ и СF не пересекали бы плоскость α, а лежали в ней). ВС параллельна АD ⇒ параллельна плоскости α. АD параллельна ВС, ЕF параллельна ВС. Две прямые , параллельные третьей прямой, параллельны. ⇒ ЕF параллельна АD и параллельна плоскости АВСD, но не параллельна АВ, которая пересекается с АD. ⇒ Прямые EF и AB - скрещивающиеся. 2) Чему равен угол между прямыми EF и AB, если ABC = 150°?
Углом между скрещивающимися прямыми называется угол между пересекающимися прямыми, соответственно параллельными данным.
Сумма углов при боковой стороне трапеции 180°, следовательно, угол ВАD=180°-150°=30°.
Проведем в плоскости ВЕF прямую ЕК, параллельную АВ.
ЕК|║АВ; ЕF║АD Углы с соответственно параллельными сторонами равны, если они оба острые или оба тупые.⇒
∠FЕК=∠ВАD=30°
-----------
ВЕ и СF могут быть проведены в плоскости АВСD. Тогда ЕD будет лежать на АD и в этом случае непараллельные прямые EF и АВ лежат в одной плоскости. Тогда АВ и EF пересекyтся.
1) Каково взаимное расположение прямых EF и AB?
(Уточняем - в плоскости α лежит только АД, а ВС - не лежит. В противном случае ВЕ и СF не пересекали бы плоскость α, а лежали в ней).
ВС параллельна АD ⇒ параллельна плоскости α.
АD параллельна ВС, ЕF параллельна ВС. Две прямые , параллельные третьей прямой, параллельны.
⇒ ЕF параллельна АD и параллельна плоскости АВСD, но не параллельна АВ, которая пересекается с АD.
⇒ Прямые EF и AB - скрещивающиеся.
2) Чему равен угол между прямыми EF и AB, если ABC = 150°?
Углом между скрещивающимися прямыми называется угол между пересекающимися прямыми, соответственно параллельными данным.
Сумма углов при боковой стороне трапеции 180°, следовательно, угол ВАD=180°-150°=30°.
Проведем в плоскости ВЕF прямую ЕК, параллельную АВ.
ЕК|║АВ; ЕF║АD Углы с соответственно параллельными сторонами равны, если они оба острые или оба тупые.⇒
∠FЕК=∠ВАD=30°
-----------
ВЕ и СF могут быть проведены в плоскости АВСD.
Тогда ЕD будет лежать на АD и в этом случае непараллельные прямые EF и АВ лежат в одной плоскости. Тогда АВ и EF пересекyтся.
1 вариант
№1
а) (a-5)²=a²-10a+25 б) (6a+b)²=36a²+12ab+b²
в) (4a-1)(4a+1)=16a²-1 в) (a+2b)³=a³+6a²b+6ab²+8b³
№2
(a-6)²-(36+5a)=a²-12a+36-36-5a=a²-17a
№3
а) 3x²+9xy=3x(x+3y) б) 10x⁵-5x=5x(2x⁴-1)
№4
а) (a+3)-2(a+3)=(a+3)(1-2)=-1(a+3) б) ax-ay+5x-5y=a(x-y)+5(x-y)=(x-y)(a+5)
в) a²+4ab+4b²=(a+2b)²=(a+2b)(a+2b)
№5
а) (y²-2a)(2a+y²)=y⁴-4a²
б) (3x²+x)²=9x⁴+6x³+x²
№6
а) 4x²y²-9a⁴=(2xy+3a²)(2xy-3a²) б) 25a²-(a+3)²=(5a-a-3)(5a+a+3)=(4a-3)(6a+3)
в) 27m³+n³=(3m+n)(9m²-3mn+n²)
№7
а) 9y²-25=0
9y²=25
y²=25/9
y₁,₂=±5/3=±1 2/3
б) (x+2)(x-2)-(x-3)²=-1
x²-4-x²+6x-9=-1
6x=12
x=2
№8
а) 35²-25²=(35-25)(35+25)=10*60=600
б) 299*301=299(300+1)=89700+299=8999