В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Мухосранск462
Мухосранск462
22.04.2020 15:08 •  Алгебра

Решите тригонометрическое уравнение: 6sinxcosx=5cos2x подробнее : )

Показать ответ
Ответ:
AnyMaskelyne
AnyMaskelyne
28.06.2020 17:25
6sinxcosx=5cos2x
6sinxcosx=5*(cos^2x - sin^2x)
6sinxcosx=5cos^2x - 5sin^2x
5sin^2x + 6cosxsinx - 5cos^2x = 0    /:cos^2x ≠ 0
однородное уравнение второй степени
5tg^2x + 6tgx - 5 =  0
Пусть tgx = t, причём t ∈ (- беск; + беск )
Тогда решим кв. уравнение:
5t^2 + 6t - 5 =  0
D = 36 + 4*5*5 = 36 + 100 = 136
√D = √136 = 2√34
t1 = ( - 6 + 2√34)/ 10  = ( - 3 + √34)/ 5
t2 = ( - 6 - 2√34)/ 10  = ( - 3 - √34)/ 5

tgx = ( - 3 + √34)/ 5
x = arctg ( - 3 + √34)/ 5 + pik, k ∈Z

tgx = ( - 3 - √34)/ 5
x = arctg ( - 3 - √34)/ 5 + pik, k ∈Z
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота