Ну, думаю, что плоскость проходит через точку А т.к. сказано что точки стоят на таких-то расстояниях. при чем можно заметить, если набросать рисунок, что параллельно плоскость не может рассполагаться к этой прямой, ведь выйдет, что расстояния до точек С и Д будет одинаковым. на том и порешили что плоскость перпендикулярна к прямой, дальше стоит вопрос как и с какой стороны, нам даны расстояния от плоскости до С и до Д и последовательность их расположения на прямой. тут просто смотришь что Д стоит дальше, С ближе, при чем 6-3=3, все как раз подходит. ответ: А = 0 (никак не удалена), В=9 (т.к. от А до С=3, от А до Д=6, дальше можно догадаться)
Если многочлен состоит из двух слагаемых, то его называют двучлен, если из трех - трехчлен. Названия четырехчлен, пятичлен и другие не используются, а в таких случаях говорят просто, многочлен.
приведение многочлена к стандартному виду состоит в том, чтобы привести каждый из одночленов к стандартному виду, а потом все подобные одночлены между собой сложить. Сложение подобных членов многочлена называют приведением подобных. Например, приведем подобные слагаемые в многочлене 4*a*b^2*c^3 + 6*a*b^2*c^3 - a*b.
Подобными здесь являются слагаемые 4*a*b^2*c^3 и 6*a*b^2*c^3. Суммой этих слагаемых будет одночлен 10*a*b^2*c^3. Следовательно, исходный многочлен 4*a*b^2*c^3 + 6*a*b^2*c^3 - a*b можно переписать в виде 10*a*b^2*c^3 - a*b. Эта запись и будет стандартным видом многочлена
от сюда следует что любой многочлен можно привести к стандартному виду.
ответ: А = 0 (никак не удалена), В=9 (т.к. от А до С=3, от А до Д=6, дальше можно догадаться)
Если многочлен состоит из двух слагаемых, то его называют двучлен, если из трех - трехчлен. Названия четырехчлен, пятичлен и другие не используются, а в таких случаях говорят просто, многочлен.
приведение многочлена к стандартному виду состоит в том, чтобы привести каждый из одночленов к стандартному виду, а потом все подобные одночлены между собой сложить. Сложение подобных членов многочлена называют приведением подобных.
Например, приведем подобные слагаемые в многочлене 4*a*b^2*c^3 + 6*a*b^2*c^3 - a*b.
Подобными здесь являются слагаемые 4*a*b^2*c^3 и 6*a*b^2*c^3. Суммой этих слагаемых будет одночлен 10*a*b^2*c^3. Следовательно, исходный многочлен 4*a*b^2*c^3 + 6*a*b^2*c^3 - a*b можно переписать в виде 10*a*b^2*c^3 - a*b. Эта запись и будет стандартным видом многочлена
от сюда следует что любой многочлен можно привести к стандартному виду.
Удачи !