В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
rafuw1
rafuw1
04.08.2020 14:20 •  Алгебра

Решите уравнение 2cosx(1+ 2sin x)=3- 4cos^2 x. б) найдите все корни этого уравнения, принадлежащие промежутку [3n/2; 11n/4] .

Показать ответ
Ответ:
Aydan666
Aydan666
08.07.2020 01:45
2cosx(1+ 2sin x)=4sin²x-1
2cosx(1+ 2sin x)-(2sinx+1)(2sinx-1)=0
(2sinx+1)(2cosx-2sinx+1)=0
2sinx+1=0⇒sinx=-1/2⇒x=(-1)^n *π/6+πn
2cosx-2sinx+1=0
cosx=cos²x/2-sin²x/2;        sinx=2sinx/2cosx/2 ;     1=sin²x/2+cos²x/2      
2cos²x/2-2sin²x/2-4sinx/2cosx/2+sin²x/2+cos²x/2=0
sin²x/2+4sinx/2cosx/2-3cos²x/2=0 /cos²x/2≠0
tg²x/x+4tgx/2-3=0
tgx/2=a
a²+4a-3=0
D=16+12=28            √D=2√7
a1=(-4-2√7)/2=-2-√7⇒tgx/2=-2-√7⇒x/2=arctg(-2-√7)+πn⇒x=2arctg(-2-√7)+2πn
a2=(-4+2√7)/2=-2+√7⇒tgx/2=-2+√7⇒x/2=arctg(-2+√7)+πn⇒x=2arctg(-2+√7)+2πn

x=7π/6;11π/6;3π/2+2arctg(-2-√7);2π+2arctg(-2+√7);5π/2+2arctg(-2-√7)∈[3π/2;11π/4]
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота