Возьмем за S весь объем задания, а за х и у - скорость первого и второго штукатура соответственно тогда первый может выполнить задание за S/x часов, а второй за S/y. S/x +5=S/y S/(x+y)=6 надо найти S/x и S/y
S/y-S/x=5 S=6x+6y S/x =6+6y/x S/y=6+6x/y 6+6y/x-6-6x/y=5 обозначим y/x=z 6z-6/z=5 6z²-6=5z 6z²-5z-6=0 D=5²+4*6*6=169 √D=13 z₁=(5-13)/12=-8/12=-2/3 отбрасываем, так как z не может быть отрицательным z₂=(5+13)/12=-18/12=3/2=1,5 S/x =6+6y/x=6+6z=6+6*1,5=6+9=15 S/y=6+6x/y=6+6/z=6+6/1,5=6+4=10 ответ: 15 и 10 часов
Ну как то такПусть производительность первого рабочего х1, второго - х2, тогда 2*(х1+х2)=1 х2+х2=1/2-х1 х2=(1/2)-х1 1/3*х1+3=2/3*х2 Подставим в уравнение 1/3*х1+3=2/3*(1/2-х1) 1/3*x1+3=2/(3-6*x1)/2 1/3*x1+3=4/(3-6*x1) 4/(3-6*x1)-1/3*x1-3=0 4*(3*x1)-(3-6*x1)-3*3*x1*(3-6*x1)=0 12*x1-3+6*x1-27*x1+54*x1^2=0 54*x1^2-9*x1-3=0 (/3) 18*x1^2-3*x1-1=0 х=(3±√9+72)/36=(3±9)/36 х=3-9)/36 не подходит х=(3+9)/36=1/3 х1=1/3 производительность в 1 день первого рабочего, для выполнения задания ему нужно 3*1/3=1 3 дня. х2=1/2-1/3=1/6 производительность в 1 день второго рабочего, для выполнения задания ему нужно 6*1/6=1 6 дней.
тогда первый может выполнить задание за S/x часов, а второй за S/y.
S/x +5=S/y
S/(x+y)=6
надо найти S/x и S/y
S/y-S/x=5
S=6x+6y
S/x =6+6y/x S/y=6+6x/y
6+6y/x-6-6x/y=5
обозначим y/x=z
6z-6/z=5
6z²-6=5z
6z²-5z-6=0
D=5²+4*6*6=169
√D=13
z₁=(5-13)/12=-8/12=-2/3 отбрасываем, так как z не может быть отрицательным
z₂=(5+13)/12=-18/12=3/2=1,5
S/x =6+6y/x=6+6z=6+6*1,5=6+9=15
S/y=6+6x/y=6+6/z=6+6/1,5=6+4=10
ответ: 15 и 10 часов
2*(х1+х2)=1
х2+х2=1/2-х1
х2=(1/2)-х1
1/3*х1+3=2/3*х2 Подставим в уравнение
1/3*х1+3=2/3*(1/2-х1)
1/3*x1+3=2/(3-6*x1)/2
1/3*x1+3=4/(3-6*x1)
4/(3-6*x1)-1/3*x1-3=0
4*(3*x1)-(3-6*x1)-3*3*x1*(3-6*x1)=0
12*x1-3+6*x1-27*x1+54*x1^2=0
54*x1^2-9*x1-3=0 (/3)
18*x1^2-3*x1-1=0
х=(3±√9+72)/36=(3±9)/36
х=3-9)/36 не подходит
х=(3+9)/36=1/3
х1=1/3 производительность в 1 день первого рабочего, для выполнения задания ему нужно 3*1/3=1 3 дня.
х2=1/2-1/3=1/6 производительность в 1 день второго рабочего, для выполнения задания ему нужно 6*1/6=1 6 дней.