Основная теорема алгебры. Уравнение n-го степеня имеет n корней. Иными словами: каков старший степень - столько и корней (действительные и комплексные)
Решим к примеру уравнение в действительных корнях.
Рассмотрим функцию . Эта функция является возрастающей на всей числовой прямой.
Также рассмотрим правую часть уравнения: функцию . Графиком линейной функции является прямой, проходящей через точки (0;6), (-6;0).
графики пересекаются в одной точке, следовательно, уравнение имеет один действительный корень и 6 комплексно-сопряженные корни.
Возьмем теперь к примеру уравнение
Если D>0, то квадратное уравнение имеет два ДЕЙСТВИТЕЛЬНЫХ корня.
Если D=0, то квадратное уравнение имеет два равные корни.
Если D<0, то квадратное уравнение действительных корня не имеет, но имеет два комплексно сопряженных корня.
= ( log₀₎₂x - log₀₎₂25)*( log₀₎₂x - log₀₎₂25)= (log₀₎₂x +2)* (log₀₎₂x +2)=
= (log₀₎₂x +2)²= log₀₎₂²x +4log₀₎₂x +4
2)log₀₎₂²(x/5) = log₀₎₂(x/5)*log₀₎₂(x/5) = (log₀₎₂x - log₀₎₂5)*(log₀₎₂x - log₀₎₂5)=
=(log₀₎₂x +1)*(log₀₎₂x +1)= (log₀₎₂x +1)² = log₀₎₂²x + 2log₀₎₂x +1
3) Само уравнение:
log₀₎₂²x +4log₀₎₂x +4 +log₀₎₂²x + 2log₀₎₂x +1 = 1 (ОДЗ: x > 0)
log₀₎₂x = t
t² +4t +4 +t² +2t = 0
2t² +6t +4 = 0
t² +3t +2 = 0
По т. Виета
а) t = -2, ⇒ log₀₎₂x = -2, x = 0,2⁻² = 25
б) t = -1, ⇒ log₀₎₂x = -1, ⇒ x = 0,2⁻¹ = 5
ответ: 125
Основная теорема алгебры. Уравнение n-го степеня имеет n корней. Иными словами: каков старший степень - столько и корней (действительные и комплексные)
Решим к примеру уравнение в действительных корнях.
Рассмотрим функцию . Эта функция является возрастающей на всей числовой прямой.
Также рассмотрим правую часть уравнения: функцию . Графиком линейной функции является прямой, проходящей через точки (0;6), (-6;0).
графики пересекаются в одной точке, следовательно, уравнение имеет один действительный корень и 6 комплексно-сопряженные корни.
Возьмем теперь к примеру уравнение
Если D>0, то квадратное уравнение имеет два ДЕЙСТВИТЕЛЬНЫХ корня.
Если D=0, то квадратное уравнение имеет два равные корни.
Если D<0, то квадратное уравнение действительных корня не имеет, но имеет два комплексно сопряженных корня.