В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
mgolubev13
mgolubev13
22.12.2021 03:02 •  Алгебра

Решите уравнение: c^4 - c^3 + c^2 + c = 0

Показать ответ
Ответ:
frautatyana20
frautatyana20
15.10.2020 15:40

0;\;\sqrt[3]{-\dfrac{17}{27}+\sqrt{\dfrac{11}{27}}}+\sqrt[3]{-\dfrac{17}{27}-\sqrt{\dfrac{11}{27}}}+\dfrac{1}{3}

Объяснение:

c^4 - c^3 + c^2 + c = 0\\c(c^3-c^2+c+1)=0

\left[\begin{array}{c}c=0\\c^3-c^2+c+1=0\end{array}\right,

1)

c=0

2)

Путь c=y+\dfrac{1}{3}.

\left(y+\dfrac{1}{3}\right)^3-\left(y+\dfrac{1}{3}\right)^2+\left(y+\dfrac{1}{3}\right)+1=0

Упростив выражение получим:

y^3+\dfrac{2}{3}y+\dfrac{34}{27}=0

По формуле Кардано, где p=\dfrac{2}{3},\;q=\dfrac{34}{27}:

y=\sqrt[3]{-\dfrac{17}{27}+\sqrt{\dfrac{11}{27}}}+\sqrt[3]{-\dfrac{17}{27}-\sqrt{\dfrac{11}{27}}}

Обратная замена:

c=\sqrt[3]{-\dfrac{17}{27}+\sqrt{\dfrac{11}{27}}}+\sqrt[3]{-\dfrac{17}{27}-\sqrt{\dfrac{11}{27}}}+\dfrac{1}{3}

Уравнение решено!

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота