Проведем КР - среднюю линию трапеции.
Проведем MN ║ АВ через точку К. Получим параллелограмм АВMN (противоположные стороны параллельны).
CK = KD по условию,
∠КСМ = ∠KDN как накрест лежащие при ВС║AD и секущей CD,
углы при вершине К равны как вертикальные, значит
ΔСМК = ΔDNK по стороне и двум прилежащим к ней углам, значит
площадь трапеции ABCD равна площади параллелограмма ABMN.
Диагональ делит параллелограмм на два равных треугольника:
Площадь ΔКВР равна половине площади параллелограмма РВМК (верхнего),
площадь ΔКАР равна половине площади параллелограмма АРКN (нижнего), значит
площадь ΔКАВ составляет половину площади всего параллелограмма ABMN, а значит и половину площади трапеции, т.е.
Skab = Sbck + Sadk.
Проведем КР - среднюю линию трапеции.
Проведем MN ║ АВ через точку К. Получим параллелограмм АВMN (противоположные стороны параллельны).
CK = KD по условию,
∠КСМ = ∠KDN как накрест лежащие при ВС║AD и секущей CD,
углы при вершине К равны как вертикальные, значит
ΔСМК = ΔDNK по стороне и двум прилежащим к ней углам, значит
площадь трапеции ABCD равна площади параллелограмма ABMN.
Диагональ делит параллелограмм на два равных треугольника:
Площадь ΔКВР равна половине площади параллелограмма РВМК (верхнего),
площадь ΔКАР равна половине площади параллелограмма АРКN (нижнего), значит
площадь ΔКАВ составляет половину площади всего параллелограмма ABMN, а значит и половину площади трапеции, т.е.
Skab = Sbck + Sadk.
1) 2sin x-1=0
sinx = 1/2
x = (-1)^n arcsin(1/2) + πk, k∈Z
x = (-1)^n (π/6) + πk, k∈Z
2) cos(2x+П/6)+1=0
cos(2x+П/6) = - 1
2x+П/6 = π + 2πn, n∈Z
2x = π - π/6 + 2πn, n∈Z
2x = 5π/6 + 2πn, n∈Z
x = 5π/12 + πn, n∈Z
3) 6sin²x - 5cosx + 5 = 0
6(1 - cos²x) - 5cosx + 5 = 0
6 - 6cos²x - 5cosx + 5 = 0
6cos²x + 5cosx - 11 = 0
cosx = t, ItI ≤ 1
6t² + 5t - 11 = 0
D = 25 + 4*6*11 = 289
t₁ = (- 5 - 17)/12
t₁ = - 22/12
t₁ = -11/6
t₁ = - 1 (5/6) не удовлетворяет условию ItI ≤ 1
t₂ = (- 5 + 11)/12
t₂ = 1/2
cosx = 1/2
x = (+ -)arccos(1/2) + 2πm, m∈Z
x = (+ -) *(π/3) + 2πm, m∈Z