В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
dadamuhamedovag
dadamuhamedovag
15.04.2022 15:09 •  Алгебра

Решите уравнение : синус 2х-12*(синус х-косинус х)+12=0

Показать ответ
Ответ:
Тимур0403
Тимур0403
05.07.2020 10:17
Sin2x - 12(sinx - cosx) + 12 =  0

Пусть sinx - cosx = t,
преобразуем для sin2x
(sinx - cosx)^2 = t^2
1 - sin2x = t^2
sin2x = 1 - t^2

Следовательно, у нас выходит новое квадратное  уравнение относительно замены
Отрешаем его:
1 - t^2 - 12t + 12 = 0
- t^2 - 12t + 13 = 0  /: (-1)
t^2 + 12t - 13 = 0
D = 144 + 52 = 14^2
t1 = ( - 12 + 14)/2 = 1
t2 = ( - 12 - 14)/2 = - 13

Выполним обратную замену
1) 
sinx - cosx = - 13
нет решений (пустое множ-во)

2)
sinx - cosx =  1
Возведём обе части уравнения в квадрат
Первые два слагаемых в сумме дают единицу
1-2sinx*cosx=1
2sinx*cosx=0
sinx*cosx=0
Теперь, произведение равно 0, когда один из множителей равен 0

Если sin x = 0, то из уравнения получаем cos x = -1
Следовательно, x = pi + 2 pi * к

Если cos x = 0, то из уравнение получаем sin x = 1
Следовательно, x = pi/2 + 2 pi * к

Общее решение есть объединение этих двух решений
х= pi +2 pi*k и х= pi/2 +*2pi*k 
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота