Все они однотипные, это линейные уравнения с одной переменной. Сначала раскроете, где надо, скобки, для чего используете распределительный закон умножения, а именно
а*(в+с-к)=ав+ас-ак, затем приведете подобные, т.е. сложите выражения с одинаковой буквой, потом соберете с одной стороны буквы, с другой числа. при этом помня, что если менять место нахождения числа или буквы, то знак надо менять на противоположный. Слева был минус, справа станет плюс, и наоборот.
затем разделите произведение на известный множитель. Если надо по ходу сократить, или выделить целую часть, не забудьте об этом.
По вашей разберу один пример.
0.9х-0.6*(х-3)=2*(0.2х-1.3)
Раскрываю скобки 0.9х-0.6х+1.8=0.4х-2.6
Соберу буквы слева, числа справа. 0.9х-0.6х-0.4х=-1.8-2.6
Приведу подобные слагаемые -0.1х=-4.4
Произведение -4.4 делю на известный множитель (-0.1)
Теперь, используя график функции у = tg х в интервале 0 < х < π/2 можно построить график этой функции и в интервале — π/2 < х <0. Для этого воспользуемся тождествомtg (—φ) = — tg φ.Оно указывает на то, что график функции y = tg x симметричен относительно начала координат. Отсюда сразу же получается та часть графика, которая соответствует значениям — π/2 < х <0Функция y = tg x периодична с периодом π. Поэтому теперь для построения ее графика нам остается лишь продолжить периодически кривую, представленную на рисунке, влево и вправо с периодом π. В результате получается кривая, которая называется тангенсоидой.Тангенсоида хорошо иллюстрирует все те основные свойства функции у = tg x, которые раньше были доказаны нами. Напомним эти свойства.1) Функция у = tg x определена для всех, значений х, кроме х = π/2 + nπ, где n — любое целое число. Таким образом, областью ее определения служит совокупность всех действительных чисел, кроме х = π/2 + nπ.2) Функция у = tg x не ограничена. Она может принимать как любые положительные, так и любые отрицательные значения. Следовательно, областью ее изменения является совокупность всех действительных чисел. Среди этих чисел нельзя указать ни наибольшего, ни наименьшего.3) Функция у = tg x нечетна (тангенсоида симметрична относительно начала координат).4) Функция у = tg x периодична с периодом π.5) В интервалахnπ < х < π/2 + nπфункция у = tg х положительна, а в интервалах— π/2 + nπ< х < nπотрицательна. При х = nπ функция у = tg x обращается в нуль Поэтому эти значения аргумента (0; ± π; ± 2π; ±3π; ..) служат нулями функции у = tg x.6) В интервалах— π/2 + nπ < х < π/2 + nπ функция монотонно возрастает. Можно сказать, что в любом интервале, в котором функция у = tg x определена, она является монотонно возрастающей.Однако ошибочно было бы считать, что функция у = tg x монотонно возрастает всюду. Так, например , π/4 + π/2 > π/2 . Однако tg (π/4 + π/2) < tg π/4 . Это объясняется тем, что в интервал, соединяющий точки х =π/4 и х = π/4 + π/2, попадает значение х = π/2, при котором функция у = tg x не определена.Для построения графика функции у = ctg x следует воспользоваться тождествомctg x = — tg (x + π/2)Оно указывает на следующий порядок построения графика:1) тангенсоиду у = tg x нужно сдвинуть влево по оси абсцисс на расстояние π/2;2) полученную кривую отобразить симметрично относительно оси абсцисс.В результате такого построения получается кривая, представленная на рисунке. Эту кривую иногда называют котангенсоидой.Котангенсоида хорошо иллюстрирует все основные свойства функции у = ctg х. Предлагаем учащимся сформулировать эти свойства и дать им графическую интерпретацию.Упражнения1.Используя графики функций у = tg x и у = ctg х, найти наименьшие положительные корни уравнений:a) tg х = —3; б) tg х = 2; в) ctg х = —3; г) ctg x = 2.2. Используя графики функций у = tg x и у = ctg х, найти все корни уравнений:a) tg х = \/3; б) ctg x = 1 / \/ 3
Все они однотипные, это линейные уравнения с одной переменной. Сначала раскроете, где надо, скобки, для чего используете распределительный закон умножения, а именно
а*(в+с-к)=ав+ас-ак, затем приведете подобные, т.е. сложите выражения с одинаковой буквой, потом соберете с одной стороны буквы, с другой числа. при этом помня, что если менять место нахождения числа или буквы, то знак надо менять на противоположный. Слева был минус, справа станет плюс, и наоборот.
затем разделите произведение на известный множитель. Если надо по ходу сократить, или выделить целую часть, не забудьте об этом.
По вашей разберу один пример.
0.9х-0.6*(х-3)=2*(0.2х-1.3)
Раскрываю скобки 0.9х-0.6х+1.8=0.4х-2.6
Соберу буквы слева, числа справа. 0.9х-0.6х-0.4х=-1.8-2.6
Приведу подобные слагаемые -0.1х=-4.4
Произведение -4.4 делю на известный множитель (-0.1)
Получаю х=44
ответ х=44