1)
Число сочетаний с повторениями из m=2 элементов по n=3
(n+m-1!/(m-1)!n!=(3+2-1!/(2-1)!3!=4!/1!3!=4
такие (перестановки не играют роли, а только сочетание количества элементов)
3 орла
2 орла, 1 решка
1 орел, 2 решки
3 решки
Условию задачи удовлетворяют 2 (первые) варианта из 4
вероятность=2/4=1/2
вероятность того,что орлов выпало больше чем решек = 1/2 = 0,5
2)
Если формул не помните, то просто рассмотрите все варианты выпадения орла и решки:
ооо
оор
оро
орр
роо
рор
рро
ррр
получаются 4 нужных варианта из 8 возможных
вероятность=4/8=1/2=0,5
Система линейных уравнений с двумя неизвестными
x + y = 5
2x - 3y = 1
Система линейных ур-ний с тремя неизвестными
2*x = 2
5*y = 10
x + y + z = 3
Система дробно-рациональных уравнений
x + y = 3
1/x + 1/y = 2/5
Система четырёх уравнений
x1 + 2x2 + 3x3 - 2x4 = 1
2x1 - x2 - 2x3 - 3x4 = 2
3x1 + 2x2 - x3 + 2x4 = -5
2x1 - 3x2 + 2x3 + x4 = 11
Система линейных уравнений с четырьмя неизвестными
2x + 4y + 6z + 8v = 100
3x + 5y + 7z + 9v = 116
3x - 5y + 7z - 9v = -40
-2x + 4y - 6z + 8v = 36
Система трёх нелинейных ур-ний, содержащая квадрат и дробь
2/x = 11
x - 3*z^2 = 0
2/7*x + y - z = -3
Система двух ур-ний, содержащая куб (3-ю степень)
x = y^3
x*y = -5
Система ур-ний c квадратным корнем
x + y - sqrt(x*y) = 5
2*x*y = 3
Система тригонометрических ур-ний
x + y = 5*pi/2
sin(x) + cos(2y) = -1
Система показательных и логарифмических уравнений
y - log(x)/log(3) = 1
x^y = 3^12
Объяснение:
1)
Число сочетаний с повторениями из m=2 элементов по n=3
(n+m-1!/(m-1)!n!=(3+2-1!/(2-1)!3!=4!/1!3!=4
такие (перестановки не играют роли, а только сочетание количества элементов)
3 орла
2 орла, 1 решка
1 орел, 2 решки
3 решки
Условию задачи удовлетворяют 2 (первые) варианта из 4
вероятность=2/4=1/2
вероятность того,что орлов выпало больше чем решек = 1/2 = 0,5
2)
Если формул не помните, то просто рассмотрите все варианты выпадения орла и решки:
ооо
оор
оро
орр
роо
рор
рро
ррр
получаются 4 нужных варианта из 8 возможных
вероятность=4/8=1/2=0,5
Система линейных уравнений с двумя неизвестными
x + y = 5
2x - 3y = 1
Система линейных ур-ний с тремя неизвестными
2*x = 2
5*y = 10
x + y + z = 3
Система дробно-рациональных уравнений
x + y = 3
1/x + 1/y = 2/5
Система четырёх уравнений
x1 + 2x2 + 3x3 - 2x4 = 1
2x1 - x2 - 2x3 - 3x4 = 2
3x1 + 2x2 - x3 + 2x4 = -5
2x1 - 3x2 + 2x3 + x4 = 11
Система линейных уравнений с четырьмя неизвестными
2x + 4y + 6z + 8v = 100
3x + 5y + 7z + 9v = 116
3x - 5y + 7z - 9v = -40
-2x + 4y - 6z + 8v = 36
Система трёх нелинейных ур-ний, содержащая квадрат и дробь
2/x = 11
x - 3*z^2 = 0
2/7*x + y - z = -3
Система двух ур-ний, содержащая куб (3-ю степень)
x = y^3
x*y = -5
Система ур-ний c квадратным корнем
x + y - sqrt(x*y) = 5
2*x*y = 3
Система тригонометрических ур-ний
x + y = 5*pi/2
sin(x) + cos(2y) = -1
Система показательных и логарифмических уравнений
y - log(x)/log(3) = 1
x^y = 3^12
Объяснение: