1) а)√(61,4)≈7,8;
Это число находится на числовой прямой между 7 и 8.
б)√(10)-2≈1,2;
Это число находится на числовой прямой между 1 и 2.
2)
\sqrt{12} y - \sqrt{48} y + \sqrt{108} y =2 \sqrt{3} y - 4 \sqrt{3} y + 6 \sqrt{3} y = 4 \sqrt{3} y
12
y−
48
y+
108
y=2
3
y−4
y+6
y=4
y
3)
\begin{gathered}- 3 \sqrt{5} = - \sqrt{45} \\ - 4 \sqrt{3} = - \sqrt{48} \\ - 2 \sqrt{11} = - \sqrt{44}\end{gathered}
−3
5
=−
45
−4
−2
11
44
( - \sqrt{48} ) < ( - \sqrt{45}) < (- \sqrt{44} )(−
)<(−
)
4)
\sqrt{3} (4 \sqrt{3} - 2 \sqrt{5} ) + \sqrt{60} = 4 \times 3 - 2 \sqrt{15} + 2 \sqrt{15} = 12
(4
)+
60
=4×3−2
15
+2
=12
5(
а) При х≤0.
б) см. фото
в) При у=2 х=-4, при у=2,5 х=-6,25
1) а)√(61,4)≈7,8;
Это число находится на числовой прямой между 7 и 8.
б)√(10)-2≈1,2;
Это число находится на числовой прямой между 1 и 2.
2)
\sqrt{12} y - \sqrt{48} y + \sqrt{108} y =2 \sqrt{3} y - 4 \sqrt{3} y + 6 \sqrt{3} y = 4 \sqrt{3} y
12
y−
48
y+
108
y=2
3
y−4
3
y+6
3
y=4
3
y
3)
\begin{gathered}- 3 \sqrt{5} = - \sqrt{45} \\ - 4 \sqrt{3} = - \sqrt{48} \\ - 2 \sqrt{11} = - \sqrt{44}\end{gathered}
−3
5
=−
45
−4
3
=−
48
−2
11
=−
44
( - \sqrt{48} ) < ( - \sqrt{45}) < (- \sqrt{44} )(−
48
)<(−
45
)<(−
44
)
4)
\sqrt{3} (4 \sqrt{3} - 2 \sqrt{5} ) + \sqrt{60} = 4 \times 3 - 2 \sqrt{15} + 2 \sqrt{15} = 12
3
(4
3
−2
5
)+
60
=4×3−2
15
+2
15
=12
5(
а) При х≤0.
б) см. фото
в) При у=2 х=-4, при у=2,5 х=-6,25
Программа на Руби
for n in -10000..10000
for k in 0..1000
p [n,k] if 10*n + 5 == k*k
end
end
Вывод
[2, 5]
[22, 15]
[62, 25]
[122, 35]
[202, 45]
[302, 55]
[422, 65]
[562, 75]
[722, 85]
[902, 95]
[1102, 105]
[1322, 115]
[1562, 125]
[1822, 135]
[2102, 145]
[2402, 155]
[2722, 165]
[3062, 175]
[3422, 185]
[3802, 195]
[4202, 205]
[4622, 215]
[5062, 225]
[5522, 235]
[6002, 245]
[6502, 255]
[7022, 265]
[7562, 275]
[8122, 285]
[8702, 295]
[9302, 305]
[9922, 315]
т.е. подразумевается что есть и другие решения, если расширять диапазон