Покажем на рисунке необходимые величины. Ось X направим по направлению движения. Так как скорость спринтера растёт, то ускорение направлено также по движению (по скорости). Это можно понять, если проанализировать формулу (6) – вектор v будет увеличиваться, если он направлен по вектору a ! Впрочем, если ты не знаешь, куда направить ускорение – ничего страшного – направляй куда-нибудь (в этой задаче, естественно, либо по движению, либо против). Знак ответа даст тебе правильное направление: если получится (+), то ускорение было направлено правильно, ну а если (–), то в другую сторону.
Запишем формулы (6) и (7) в проекции на ось X для данной задачи:
v A=at ; S= at 2
По условию начальная скорость v0=0 , а так как все вектора 2 направлены по оси X, то везде знаки (+). Из первой формулы можно найти ускорение a=vtA =5 м/с2 , подставляя которое во вторую формулу получим перемещение (и путь, так как движение происходит вдоль прямой в одну сторону): S=10м .
Если точка Р(1;0) повернётся на угол 90° против часовой стрелки, то она перейдёт в точку с координатами Р₁(0,1). И если поворот будет по часовой стрелке, то точка будет Р₂(0,-1). Если точку Р(1;0) повернуть на 180° против часовой стрелки, то она перейдёт в точку Р₃(-1;0). Если поворот будет по часовой стрелке, то получим ту же точку Р₃(-1;0). Если точку Р(1;0) повернуть на 270° против часовой стрелки, то она перейдёт в точку Р₄(0;-1). Если поворот будет по часовой стрелке, то получим точку Р₅(0;1).
Путь (S) = 10 м
Ускорение (а) = 5м/с2
Объяснение:
Покажем на рисунке необходимые величины. Ось X направим по направлению движения. Так как скорость спринтера растёт, то ускорение направлено также по движению (по скорости). Это можно понять, если проанализировать формулу (6) – вектор v будет увеличиваться, если он направлен по вектору a ! Впрочем, если ты не знаешь, куда направить ускорение – ничего страшного – направляй куда-нибудь (в этой задаче, естественно, либо по движению, либо против). Знак ответа даст тебе правильное направление: если получится (+), то ускорение было направлено правильно, ну а если (–), то в другую сторону.
Запишем формулы (6) и (7) в проекции на ось X для данной задачи:
v A=at ; S= at 2
По условию начальная скорость v0=0 , а так как все вектора 2 направлены по оси X, то везде знаки (+). Из первой формулы можно найти ускорение a=vtA =5 м/с2 , подставляя которое во вторую формулу получим перемещение (и путь, так как движение происходит вдоль прямой в одну сторону): S=10м .
Если точку Р(1;0) повернуть на 180° против часовой стрелки, то она перейдёт в точку Р₃(-1;0). Если поворот будет по часовой стрелке, то получим ту же точку Р₃(-1;0).
Если точку Р(1;0) повернуть на 270° против часовой стрелки, то она перейдёт в точку Р₄(0;-1). Если поворот будет по часовой стрелке, то получим точку Р₅(0;1).