1. В первой части неравенства замечаем формулу сокращенного умножения "разность квадратов" , а вторую часть просто раскрываем по формуле квадрата суммы: 4x^2-25-(4x^2+12x+9)<или равен 2 Раскрываем скобки с противоположным знаком. 4x^2-25-4x^2-12x-9<или равен 2 Приводим подобные слагаемые. 4x^2 сокращаются. -12x-34<или равен 2 -12x<или равен 36 Т.к. -12 с отрицательным знаком, меняем знак неравенства на противоположный., получим x>или равен 3. 2. Разложим множители по формуле разности кубов и получим: =(x-3y)(x^2+3xy+y^2) 3. Чтобы прямая и парабола пересекались, нужно, чтобы у них совпадали x и y. Тогда Составляем систему ур-ний из данных формул. Подставляем y=100 в ур-ние y=x^2. 100=x^2. отсюда x1=100, x2=-100. Получаем точки: (100;100) и (-100;100)
Смотри, попробую объяснить простым языком.
6,1% максимальное количество процентов учеников на золотую медаль.
65 максимальное количество учеников.
Найдем наибольшее количество учеников 6,1% от 65 учеников.
6,1 = x
100= 65
Перемножаем крест на крест x= 6,1*65/100 = 3,9
Аналогично с минимальными данными
5,9%= x
100% = 35
Перемножаем x=5,9*35/100= 2,065
По логике, количество учеников может быть только целым числом, поэтому от 2,065 до 3,9, целое только 3. Значит 3 ученика имею золотую медаль.
Теперь находим по логике целый процент между 5,9 и 6,1. Это 6%
6%= 3
100%=x
Перемножаем x= 100*3/6=50(количество учащихся в этих классах)
1. В первой части неравенства замечаем формулу сокращенного умножения "разность квадратов" , а вторую часть просто раскрываем по формуле квадрата суммы:
4x^2-25-(4x^2+12x+9)<или равен 2
Раскрываем скобки с противоположным знаком.
4x^2-25-4x^2-12x-9<или равен 2
Приводим подобные слагаемые. 4x^2 сокращаются.
-12x-34<или равен 2
-12x<или равен 36
Т.к. -12 с отрицательным знаком, меняем знак неравенства на противоположный., получим x>или равен 3.
2. Разложим множители по формуле разности кубов и получим: =(x-3y)(x^2+3xy+y^2)
3. Чтобы прямая и парабола пересекались, нужно, чтобы у них совпадали x и y. Тогда Составляем систему ур-ний из данных формул. Подставляем y=100 в ур-ние y=x^2.
100=x^2. отсюда x1=100, x2=-100. Получаем точки: (100;100) и (-100;100)