Для доказательства достаточно подставить вместо х предложенное значение и выяснить, будет ли равенство верным. а) х= 3 3²-4·3+3=0 9-12+3=0 0=0 - верное равенство, значит, число 3 является корнем уравнения х²-4х+3=0. Доказано.
б) х= - 7 2·(-7)²+(-7)-3=0 98-7-3=0 88≠0 - неверное равенство, значит, число -7 не является корнем уравнения 2х² +х-3=0.
Как оказалось, все элементарно, Ватсон!:) Я кину Вам в ЛС ссылочку на полезную информацию по данной теме, а пока что само решение!
Итак, сначала разберемся, что от нас хотят. Абсцисса (это значения независимой переменной х) должна быть положительной, то есть x>0, а ордината (это значения зависимой переменной у) отрицательной, то есть y<0. Теперь изучим заданную функцию: y=100x+b является линейной функцией вида у=кх+b. По свойству функции график функции пересекает ось Ох в точке , а ось Оу - в точке (0; b). Значит х будет больше нуля при Т.к. к=100, то получим неравенство . Следовательно при b<0 наша функция пересечет ось Ох в точке с положительным значением х, а ось Оу в точке с отрицательным значением у.
а) х= 3
3²-4·3+3=0
9-12+3=0
0=0 - верное равенство, значит, число 3 является корнем уравнения х²-4х+3=0. Доказано.
б) х= - 7
2·(-7)²+(-7)-3=0
98-7-3=0
88≠0 - неверное равенство, значит, число -7 не является корнем уравнения 2х² +х-3=0.
в) х= -5
2·(-5)² - 3·(-5) - 65 =0
50+15-65 = 0
0 = 0 - верное равенство, значит, число -5 является корнем уравнения 2х² -3х-65=0.
г) х=6
6²-2·6+6=0
36-12+6 = 0
30≠0 - неверное равенство, значит, число 6 не является корнем уравнения х²-2х+6=0.
Итак, сначала разберемся, что от нас хотят. Абсцисса (это значения независимой переменной х) должна быть положительной, то есть x>0, а ордината (это значения зависимой переменной у) отрицательной, то есть y<0.
Теперь изучим заданную функцию: y=100x+b является линейной функцией вида у=кх+b. По свойству функции график функции пересекает ось Ох в точке , а ось Оу - в точке (0; b). Значит х будет больше нуля при Т.к. к=100, то получим неравенство . Следовательно при b<0 наша функция пересечет ось Ох в точке с положительным значением х, а ось Оу в точке с отрицательным значением у.
ответ: b∈(-∞;0)